Sanboh Lee | Materials Science | Best Researcher Award

Prof. Sanboh Lee | Materials Science | Best Researcher Award

National Tsing Hua University | Taiwan

Author Profile

Scopus

Orcid

🌱 Early Academic Pursuits

Prof. Sanboh Lee's journey into materials science began with a BS in Physics from Fu Jen Catholic University (1970), followed by an MS in Physics from National Tsing Hua University (1972). His academic curiosity led him to pursue a PhD in Materials Science at the University of Rochester (1980), where he built a strong foundation in material properties and mechanics.

💼 Professional Endeavors

With a career spanning decades, Prof. Lee has been a Professor at National Tsing Hua University (1985-2018) and served as an Adjunct Professor at the University of Science and Technology Beijing since 2005. His global research contributions include visiting scholar roles at Lehigh University and guest scientist positions at the National Institute of Standards and Technology (NIST). His consultancy work with institutions like the University of Rochester, Oak Ridge National Laboratory, and the University of Tennessee reflects his expertise in materials engineering.

🔬 Contributions and Research Focus

Prof. Lee’s research spans dislocation mechanics, optical and mechanical properties of polymers, hydrogen transport in low-carbon steels, and semiconductor devices. His groundbreaking studies include:

  • Dislocation and crack interactions in materials.
  • Gamma-ray effects on optical and mechanical properties.
  • Nano-imprint technology and micro-machining innovations.
  • Diffusion-induced and thermal stresses in materials.
  • Polymers and composite materials with enhanced mechanical and optical properties.
    With over 280 journal publications and 150 conference presentations, Prof. Lee has significantly shaped modern material science.

🏆 Accolades and Recognition

Prof. Lee has received numerous international awards, including:

  • Lifetime Achievement Award (2022) by VDGOOD® Professional Association.
  • SAS Eminent Fellow Membership (2021).
  • Fellow, Materials Research Society-Taiwan (2009).
  • Tsing Hua Chair Professor (2006-).
  • Fellow, ASM International, USA (2004) for contributions to fracture mechanics and transport processes in metals and polymers.
  • Outstanding Special Research Fellow (2002) by the National Science Council of Taiwan.
  • Who’s Who in Science and Engineering and other global recognitions in research excellence.

🌍 Impact and Influence

As an influential figure in materials science, Prof. Lee has contributed to academic committees, international symposia, and editorial boards. He has been an advisor, editor, and organizer for numerous scientific events and research journals. His leadership roles in organizations such as TMS, Materials Chemistry and Physics, and the Asia Pacific Academy of Materials underscore his global impact in material research and engineering.

🔮 Legacy and Future Contributions

Prof. Lee’s pioneering work in materials science, fracture mechanics, and nanotechnology continues to inspire new generations of researchers. His advancements in nano-imprint technology, hydrogen transport, and semiconductor materials are paving the way for next-generation engineering applications. As a Professor Emeritus, his legacy endures through ongoing collaborations, mentorship, and research innovations that will influence future breakthroughs in materials engineering and nanotechnology.

Publicaations


📄 Kinetic Analysis of the Cracking Behavior in Methanol-Treated Poly(methyl methacrylate)/Functionalized Graphene Composites

  • Journal: Journal of Composites Science
  • Year: 2025
  • Authors: Bing-Hong Yang, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee

📄 Cracking in UV-Irradiated Poly(methyl methacrylate)/Functionalized Graphene Composites: Solvent Effect

  • Journal: Journal of Polymer Research
  • Year: 2024
  • Authors: Bing-Hong Yang, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee

📄 Analysis of the Thermal Aging Kinetics of Tallow, Chicken Oil, Lard, and Sheep Oil

  • Journal: Molecules
  • Year: 2024
  • Authors: Yun-Chuan Hsieh, Hao Ouyang, Yulin Zhang, Donyau Chiang, Fuqian Yang, Hsin-Lung Chen, Sanboh Lee

📄 Creep-Recovery Deformation of 304 Stainless-Steel Springs Under Low Forces

  • Journal: Mechanics of Materials
  • Year: 2024
  • Authors: Ming-Yen Tsai, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee

📄 A Mechanical Model for Stress Relaxation of Polylactic Acid/Thermoplastic Polyurethane Blends

  • Journal: Journal of Composites Science
  • Year: 2024
  • Authors: Yi-Sheng Jhao, Hao Ouyang, Chien-Chao Huang, Fuqian Yang, Sanboh Lee

 

Mauro Zarrelli | Engineering | Best Researcher Award

Dr. Mauro Zarrelli | Engineering | Best Researcher Award

CNR - National Research Council, IPCB - Institue of POlymers, Composites and Biomaterials | Italy

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 🎓

Dr. Mauro Zarrelli's academic journey began at Federico II, Naples University, where he pursued a Master's Degree in Materials Engineering from 1993 to 1998. His final research project focused on analyzing fatigue properties and mechanical performance of structural composite materials based on polymer matrices. His dedication to advanced materials science led him to Cranfield University (UK), where he completed a PhD in 2002 under the supervision of Prof. Ivana K. Partridge. His doctoral research involved finite element modeling (FEM) of heat transfer and residual stresses in composite materials, contributing to innovations in thermosetting resin systems for aerospace applications.

Professional Endeavors 🏆

Dr. Zarrelli's career trajectory has been marked by significant professional advancements. In 2014, he received habilitation as an Associate Professor in Material Science and Technology (ING/IND-22) from the Italian Ministry of Education, University, and Research (MIUR). His growing expertise led to habilitation as a Full Professor in Aerospace Engineering (ING/IND-04) in 2022, and in 2023, he secured full professorship in Material Science and Technology (ING/IND-22). Additionally, he was recognized as a Chartered Engineer in Benevento province (2000–2018), solidifying his professional standing in engineering sciences.

Contributions and Research Focus 🔬

A leader in materials science and aerospace engineering, Dr. Zarrelli has made pioneering contributions in:

  • Polymer composites  (cure kinetics, rheology, mechanical properties)
  • Nanocomposites (MWCNT, graphene-reinforced polymers)
  • Energy harvesting systems
  • Aerospace and space materials
  • Fire resistance and thermal analysis
  • Structural performance assessment

His expertise extends to thermal analysis, microcalorimetry, mechanical testing, microscopy, and structural characterization techniques, making him a sought-after researcher in the field.

Accolades and Recognition 🏅

Dr. Zarrelli’s excellence in research has been recognized through multiple prestigious grants and awards:

  • 1997–1998: Grant for Final Degree Thesis from Italian Car Association and ELASYS (FIAT Group).
  • 1999–2001: Research Proposal Grant from AUDI Foundation, UK, for developing a novel Young’s Modulus measurement holder for thermosetting resins.
  • Invited Speaker at International Conferences , including SAMPE (1998), ECCM8 (1998), and AIMAT (1998).

Impact and Influence 🌍

As an expert reviewer for national and international research institutions, Dr. Zarrelli has played a vital role in evaluating projects for organizations like:

  • European Research Centre
  • French Research Agency
  • UK National Commission for UNESCO
  • Poland Narodowe Centrum Nauki
  • Romanian Ministry of Education
  • European Science Foundation

His insights have significantly influenced research funding, policy-making, and scientific advancements in nanotechnology, polymer composites, and aerospace materials.

Legacy and Future Contributions 🚀

With a career spanning over two decades, Dr. Mauro Zarrelli has made lasting contributions to materials science and aerospace engineering. His research on advanced composites, fire-resistant materials, and nanotechnology continues to shape the industry, ensuring safer, more efficient, and high-performance materials for aerospace, automotive, and energy applications. As a leading scientist in polymer physics and nanocomposites, Dr. Zarrelli is expected to drive future innovations in sustainable materials, intelligent structural monitoring, and next-generation aerospace systems. His work stands as a testament to the power of interdisciplinary research in shaping the future of engineering and material sciences.

 

Publications


📄 An Experimental Approach for Investigating Fatigue-Induced Debonding Propagation in Composite Stiffened Panels Using Thermographic Phase Mapping
Authors: A. Riccio, A. Russo, C. Toscano, M. Zarrelli
Journal: Polymers
Year: 2025


📄 Unstable Delamination Growth in Stiffened Composite Panels Under Cyclic Loading Conditions
Authors: R. Castaldo, A. Russo, M. Zarrelli, C. Toscano, A. Riccio
Journal: Polymers
Year: 2024


📄 The Effect of Carbon-Based Nanofillers on Cryogenic Temperature Mechanical Properties of CFRPs
Authors: A. Zotti, S. Zuppolini, A. Borriello, L. Trinchillo, M. Zarrelli
Journal: Polymers
Year: 2024


📄 Hierarchical Aerospace Epoxy Composites of Carbon Fiber and Hyperbranched Filler: Toughening Behavior from Nanocomposites to Composites
Authors: A. Zotti, S. Zuppolini, A. Borriello, V. Vinti, M. Zarrelli
Journal: Composite Structures
Year: 2024


📄 Impact-Dynamic Properties of Aromatic Hyperbranched Polyester/RTM6 Epoxy Nanocomposites
Authors: A.M. Elmahdy, N. Ghavanini, A. Zotti, A. Borriello, P. Verleysen
Journal: Materials Letters
Year: 2023


 

Zhengzhi Mu | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Zhengzhi Mu | Materials Science | Best Researcher Award

Jilin University | China

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 📚

Assoc. Prof. Dr. Zhengzhi Mu embarked on an extraordinary academic journey marked by excellence and interdisciplinary focus. He earned his Bachelor's degree in Food Science and Engineering (2009–2013) and continued to achieve a Ph.D. in Bionic Science and Engineering from Jilin University (2013–2019). His studies extended to the University of Michigan-Ann Arbor, where he served as a joint Ph.D. candidate in Chemical Engineering (2016–2018). These formative years laid the foundation for his expertise in biomimetic structures and bio-inspired composites, blending engineering principles with nature's ingenuity.

Professional Endeavors 🏢

Dr. Mu's career has been distinguished by diverse roles at leading institutions worldwide. After completing his Ph.D., he served as a postdoctoral researcher at Jilin University's School of Mechanical and Aerospace Engineering (2019–2022). He was a visiting scientist at RWTH Aachen University, Germany, in 2023, further enriching his expertise in material applications in mechanical engineering. His international engagements also include research at the Biointerfaces Institute, University of Michigan-Ann Arbor, emphasizing his commitment to global collaboration in bionic engineering.

Contributions and Research Focus 🧪

Dr. Mu's research interests encompass biomimetic structures, bio-inspired composites, and bionic engineering. His contributions include over 30 peer-reviewed publications with a Google Scholar citation count exceeding 900 and an h-index of 15. Noteworthy works like his 2023 review on lightweight structural biomaterials in Biomimetics reflect his dedication to advancing sustainable engineering inspired by nature. His innovations extend to patents, with 33 issued out of 45 applied, and pioneering contributions in interfacial reinforcement of carbon fiber composites and bio-inspired flexible strain sensors.

Accolades and Recognition 🏆

Dr. Mu has received numerous prestigious awards, including the High-level Talents designation in Jilin Province (2023) and the Outstanding Postdoctoral Research Fellow accolade at Jilin University (2021). His innovative work has been celebrated globally, with honors like the International Bionic Engineering Award (2019) and the National Excellent Ph.D. Dissertation Award in China (2019, 2020). These accolades underscore his exceptional contributions to bionic engineering and applied sciences.

Impact and Influence 🌍

As an active member of esteemed organizations such as the International Society of Bionic Engineering (ISBE) and the American Chemical Society (ACS), Dr. Mu plays a vital role in advancing the scientific community. His editorial responsibilities for journals like Biomimetics and Nanomaterials demonstrate his commitment to shaping the future of bionic research. His expertise has been showcased at prominent international conferences, where he has delivered influential presentations on bio-inspired innovations.

Legacy and Future Contributions 🌟

Assoc. Prof. Dr. Zhengzhi Mu's work stands at the intersection of science, engineering, and nature. His ongoing contributions to biomimetic materials and bionic systems hold promise for sustainable development and transformative technologies. As he continues to mentor emerging scientists and collaborate across disciplines, his legacy will inspire the next generation of researchers to harness nature's designs for innovative solutions.

 

Publications


📜 Bionic Inner-Tapered Energy Absorption Tube Featuring Progressively Enhanced Fold Deformation Mode
  Journal: Biomimetics
 Year: 2024
Authors: Shuang Zhang, Zhengzhi Mu, Wenda Song, Zhiyan Zhang, Hexuan Yu, Binjie Zhang, Zhiwu Han, Luquan Ren


📜 High-Toughness Epoxy-Based Composites with a Bioinspired Three-Dimensional Interconnected Skeleton for Photothermal Conversion Applications
  Journal: Nano Letters
Year: 2024
Authors: Zhiyan Zhang, Yufei Wang, Zhengzhi Mu, Wenda Song, Shuang Zhang, Jialve Sun, Hexuan Yu, Hanliang Ding, Shichao Niu, Zhiwu Han, et al.


📜 A Durable Triboelectric Nanogenerator with a Coaxial Counter-Rotating Design for Efficient Harvesting of Random Mechanical Energy
  Journal: Nano Energy
  Year: 2023
Authors: Ma, G.; Wang, D.; Wang, J.; Li, J.; Wang, Z.; Li, B.; Mu, Z.; Niu, S.; Zhang, J.; Ba, K., et al.


📜 Advanced Bio-Inspired Mechanical Sensing Technology: Learning from Nature but Going Beyond Nature
  Journal: Advanced Materials Technologies
Year: 2023
Authors: Xin, Q.; Zhang, J.; Han, Z.; Zhao, H.; Hou, T.; Liu, Y.; Niu, S.; Han, Q.; Mu, Z.; Li, B., et al.


📜 Bacteria Engineered with Intracellular and Extracellular Nanomaterials for Hierarchical Modulation of Antitumor Immune Responses
 Journal: Materials Horizons
Year: 2023
Authors: Song, P.; Han, X.; Li, X.; Cong, Y.; Wu, Y.; Yan, J.; Wang, Y.; Wang, X.; Mu, Z.; Wang, L., et al.


 

Wenbing Li | Materials Science | Editorial Board Member

Assoc Prof Dr. Wenbing Li | Materials Science | Editorial Board Member

Jiangnan university | China

Author Profile

Orcid

Early Academic Pursuits 🎓

Dr. Wenbing Li began his academic journey with a focus on materials science, leading him to pursue a Ph.D. at the prestigious Harbin Institute of Technology. Under the guidance of Prof. Jinsong Leng, an academician of the Chinese Academy of Sciences, he honed his expertise in shape memory polymer composites. His academic interests took him overseas in 2017 when he became a joint PhD student at the University of Colorado at Boulder, working under Prof. Yifu Ding, where he expanded his research capabilities and broadened his international academic exposure.

Professional Endeavors 🏛️

Dr. Li officially launched his professional career in 2019 when he joined Jiangnan University as an associate researcher in the College of Textile Science and Engineering. With a solid foundation in the innovative field of shape memory composites, his research has been centered on chemical structure design, improving material properties, and exploring advanced manufacturing techniques for polymer composites. His work in these areas positions him at the cutting edge of materials engineering.

Contributions and Research Focus 🔬

Specializing in shape memory polymer composites, Dr. Li's research addresses crucial aspects of material science, including the design of chemical structures and enhancing the functionality of polymers. His focus on developing innovative solutions has led to his work being published in top-tier journals such as Small, Chemical Engineering Journal, and Journal of Materials Chemistry A. His studies also explore the practical applications of these materials in fields like engineering and biomedicine, making his contributions significant to both academia and industry.

Accolades and Recognition 🏆

Dr. Li's research has been widely recognized in the scientific community, with numerous publications in highly respected journals, including ACS Applied Materials & Interfaces, Acta Biomaterialia, and Composites Part A. His collaborations with leading researchers and institutions like the University of Colorado have further established his reputation as a rising star in materials science. His achievements have garnered attention for their innovation and potential impact on various industries.

Impact and Influence 🌍

Dr. Li's work in the field of shape memory composites has significant implications, particularly in the development of advanced materials for use in technology, biomedicine, and textiles. His focus on enhancing material properties and discovering new applications for shape memory polymers has opened doors for practical applications that could transform industries. His research not only influences the scientific community but also contributes to innovations that could have a lasting impact on the global materials science field.

Legacy and Future Contributions 🚀

As Dr. Li continues his academic and research endeavors, his future contributions are poised to leave a lasting legacy in the field of polymer composites. His pioneering work in shape memory polymers has already laid the groundwork for future advancements, and his dedication to improving material science is likely to lead to further breakthroughs. With his ongoing research and publications, Dr. Li is set to influence future generations of researchers, creating a lasting impact on both academic and industrial applications of polymer science.

 

Publications


📄Poly(ethylene-co-vinyl acetate)/Fe3O4 with Near-Infrared Light Active Shape Memory Behavior 

  • Journal: Composites Communications
  • Year: 2024
  • Contributors: Zhiyong Zeng, Junhao Liu, Feng Cao, Hongmei Chen, Kun Qian, Wenbing Li

📄Shape Memory Polymer Micropatterns with Switchable Wetting Properties 

  • Journal: European Polymer Journal
  • Year: 2023
  • Contributors: Junhao Liu, Wanting Wei, Feng Cao, Zhiyong Zeng, Kun Qian, Hongmei Chen, Fenghua Zhang, Wenbing Li

📄Poly(acrylic acid)-Assisted Intrafibrillar Mineralization of Type I Collagen: A Review 

  • Journal: Macromolecular Rapid Communications
  • Year: 2023
  • Contributors: Lei Chen, Zhiyong Zeng, Wenbing Li

📄Ultrathin Flexible Electrospun EVA Nanofiber Composite with Electrothermally-Driven Shape Memory Effect for Electromagnetic Interference Shielding 

  • Journal: Chemical Engineering Journal
  • Year: 2022
  • Contributors: Wanting Wei, Pengfei Zhang, Feng Cao, Junhao Liu, Kun Qian, Diankun Pan, Yongtao Yao, Wenbing Li

📄Recent Advances and Perspectives of Shape Memory Polymer Fibers 

  • Journal: European Polymer Journal
  • Year: 2022
  • Contributors: Wanting Wei, Junhao Liu, Jian Huang, Feng Cao, Kun Qian, Yongtao Yao, Wenbing Li

 

Mohammed Al Bahri | Materials Science | Best Researcher Award

Dr. Mohammed Al Bahri | Materials Science | Best Researcher Award

A'Sharqiyah University | Oman

Author Profile

Scopus

Orcid

Google Scholar

🎓 Early Academic Pursuits

Dr. Mohammed Al Bahri's academic journey began with a Bachelor’s degree in Physics from the College of Education at Sultan Qaboos University in 1998. He then pursued a Master’s degree in Physics in 2010, where his thesis focused on the "Morphology Dependent Assembly of CuO Nanoparticles." Under the guidance of Prof. Salim Al Harthi, Dr. Al Bahri demonstrated an early interest in nanomaterials. His academic achievements culminated in a Ph.D. in 2018, where he specialized in "Magnetic Nanowires for High Density and Low Power Information Storage" under the mentorship of Prof. Rachid Sbiaa. His Ph.D. work was supported by a full scholarship from the Ministry of Education, further showcasing his potential as a promising researcher.

💼 Professional Endeavors

Dr. Al Bahri's professional career spans over two decades, starting as a Physics teacher in secondary schools in Oman (1998-2001). He later transitioned to leadership roles within the Ministry of Education, such as the Head of the Monitoring Student Achievement Department (2012-2018), where he led a team of assessment officers and contributed to the development of student assessment policies. In academia, he became an Assistant Professor at A'Sharqiyah University in 2018, eventually rising to Associate Professor in 2023. His teaching contributions extend across multiple departments, including Applied and Health Sciences, Engineering, and Education. Additionally, he has played a key role in academic program development, internal reviews, and community engagement.

🧑‍🔬 Contributions and Research Focus

Dr. Al Bahri's research interests are primarily focused on magnetic nanowires, nanodevices, and their applications in information storage. His scholarly work includes publishing 13 articles in reputable journals like the Journal of Magnetism and Magnetic Materials and Nanomaterials. With 126 citations in Google Scholar, his research has had a notable impact on the field of nanotechnology. Dr. Al Bahri’s work often addresses critical issues in magnetic domain walls and storage devices, contributing significantly to advancements in nanodevice technology.

🏆 Accolades and Recognition

Throughout his career, Dr. Al Bahri has received numerous accolades. He was awarded the "Best Physics Teacher" by the Ministry of Education in 2002. More recently, in 2022-2023, he was recognized as the "Best Researcher" at A'Sharqiyah University. His work has garnered international attention, with him being among the top 50 academic researchers in Asia for 2022. He has also received prestigious research awards, including the Best Research Award from the International Research Awards (IIRA-2022) and the New Science Inventions (NESIN) 2020 Awards.

🌍 Impact and Influence

Dr. Al Bahri’s influence extends beyond academia into community service. He has conducted various seminars and workshops for teachers and students, contributing to public education. His leadership in developing academic programs and policies, both at the university and ministry levels, has shaped educational practices in Oman. His research in nanotechnology also offers potential solutions to global challenges in data storage and energy efficiency, reflecting his broad impact.

🏅 Legacy and Future Contributions

As a dedicated educator, researcher, and academic leader, Dr. Al Bahri’s legacy is rooted in his contributions to both physics education and nanotechnology research. His ongoing work in magnetic nanodevices holds promise for future advancements in high-density storage technologies. His role in academic program development and his influence on education policy will likely continue to shape the next generation of Omani scientists and educators.

 

Publications


  • 📖Vortex Domain Wall Thermal Pinning and Depinning in a Constricted Magnetic Nanowire for Storage Memory Nanodevices
    Journal: Nanomaterials
    Authors: Mohammed Al Bahri, Salim Al-Kamiyani, Al Maha Al Habsi
    Year: 2024

  • 📖Thermal Effects on Domain Wall Stability at Magnetic Stepped Nanowire for Nanodevices Storage
    Journal: Nanomaterials
    Authors: Mohammed Al Bahri, Salim Al-Kamiyani
    Year: 2024

  • 📖Chirality‐Dependent Dynamics and Pinning of Transverse Domain Wall in Constricted Nanowires
    Journal: physica status solidi (a)
    Authors: Mohammed Al Bahri, Rachid Sbiaa
    Year: 2024

  • 📖Multi-segmented Nanowires for Vortex Magnetic Domain Wall Racetrack Memory
    Journal: Chinese Physics B
    Authors: M. Al Bahri, M. Al Hinaai, T. Al Harthy
    Year: 2023

  • 📖Noise Measurements in Industrial Areas in North A' Sharqiyah Region - Oman
     Journal: International Journal of Research and Innovation in Applied Science
    Authors: M. Al Bahri
    Year: 2022

 

Thi Sinh Vo | Materials Science | Excellence in Research Award

Dr. Thi Sinh Vo | Materials Science | Excellence in Research Award

Sungkyunkwan University | South Korea

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 🎓

Dr. Thi Sinh Vo's academic journey began with a Bachelor of Science in Materials Science from HCM City University of Science, Vietnam, where she developed a strong foundation in polymer and composite materials. She further honed her expertise with a Master’s degree in Chemical Engineering at Daegu University, South Korea, focusing on the synthesis and characterization of advanced materials. Her academic excellence continued with a Ph.D. in Mechanical Engineering from Sungkyunkwan University, where her thesis on chitosan-based functional composites showcased her innovative approach to materials science.

Professional Endeavors 🛠️

Dr. Vo has a diverse range of professional experiences, from working as a chemical engineer to leading research projects in prestigious labs. Her roles have included the design and synthesis of composite materials, developing innovative solutions for water-based adhesives, and optimizing manufacturing processes. Her postdoctoral research at Sungkyunkwan University has further solidified her position as a leading expert in polymer-composite materials, where she continues to contribute to cutting-edge research.

Contributions and Research Focus 🔬

Dr. Vo's research focuses on the synthesis, characterization, and application of advanced polymeric and composite materials. She has made significant contributions in areas such as electromechanical and electrochemical sensors, human motion sensing, and organic dye removal for wastewater treatment. Her interdisciplinary work integrates materials science with engineering and environmental science, resulting in impactful outcomes that push the boundaries of what is possible in these fields.

Accolades and Recognition 🏆

Dr. Vo's dedication to research has been recognized with several prestigious awards. She has received the Best Paper Award, the Best Researcher Award, and the Excellence Award for Poster Presentation, among others. These accolades highlight her contributions to the field of materials science and her commitment to advancing knowledge through rigorous research and innovation.

Impact and Influence 🌍

Dr. Vo's work has had a significant impact on the field of materials science, particularly in the development of functional composites for sensors and environmental applications. Her research has been published in top-tier journals, and she is a sought-after reviewer for various scientific publications. Her ability to mentor and lead research teams has also fostered a collaborative environment that encourages innovation and knowledge sharing.

Legacy and Future Contributions 🌟

Dr. Vo's legacy is one of innovation, leadership, and a relentless pursuit of excellence in materials science. As she continues her research, she is poised to make even more significant contributions to the field, particularly in the development of new materials for sensors and environmental applications. Her future work will undoubtedly continue to influence and inspire researchers around the world.

 

Publications


📄 3D Porous Sponge-like Sensors Prepared from Various Conductive Nanohybrids-filled Melamine Sponge Toward Human Motion Detections
Authors: Vo, T.S., Nguyen, T.S., Lee, S.-H., Kim, K.
Journal: Journal of Materials Research and Technology
Year: 2024


📄 Hybrid Film-like Strain Sensors Prepared from Polydimethylsiloxane-covered 3D Porous Network Sponges Toward Human Motion Detection
Authors: Vo, T.S., Nguyen, T.S., Lee, S.-H., Kim, K.
Journal: Applied Materials Today
Year: 2024


📄 Natural Bamboo Powder and Coffee Ground as Low-cost Green Adsorbents for the Removal of Rhodamine B and Their Recycling Performance
Authors: Vo, T.S., Hossain, M.M., Kim, K.
Journal: Scientific Reports
Year: 2023


📄 Realization of Motion Sensing Composites Prepared from the Incorporation of Three-dimensional Porous Conductive Foams and Polydimethylsiloxane
Authors: Vo, T.S., Nguyen, T.S., Lee, S.-H., Kim, D., Kim, K.
Journal: Journal of Science: Advanced Materials and Devices
Year: 2023


📄 Crosslinked 3D Porous Composite Foams as Adsorbents for Efficient Organic Dye Removal
Authors: Vo, T.S., Hossain, M.M., Lee, J., Suhr, J., Kim, K.
Journal: Environmental Technology and Innovation
Year: 2023


 

Jiawen Xu | Engineering | Best Researcher Award

Assoc Prof Dr. Jiawen Xu | Engineering | Best Researcher Award

Southeast University | China

Author profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 📚

Dr. Jiawen Xu's academic journey began with his undergraduate studies at the University of Science and Technology of China, where he pursued a Bachelor’s degree in Precision Machinery and Precision Instrumentation from 2005 to 2009. His interest in advanced engineering led him to continue his studies at the same institution for his Master’s degree, focusing on the same field under the guidance of Professor Zhihua Feng. Dr. Xu's pursuit of higher knowledge took him to the University of Connecticut, Storrs, where he completed his Ph.D. in Mechanical Engineering in 2017, working under Professor Tang Jiong. His early academic pursuits laid a strong foundation for his research in mechanical piezoelectric metamaterials and structural health monitoring.

Professional Endeavors 🛠️

Since 2018, Dr. Xu has served as an Associate Professor at the School of Instrument Science and Engineering, Southeast University, Nanjing, China. His professional career is distinguished by his involvement in cutting-edge research and development projects. Dr. Xu has led several key projects funded by national and provincial programs, including research on piezoelectric metamaterials and energy harvesting systems. His role in these projects underscores his expertise in vibration energy harvesting, structural health monitoring, and mechanical metamaterials.

Contributions and Research Focus 🔬

Dr. Xu's research is characterized by his innovative work in mechanical piezoelectric metamaterials and structural health monitoring. His contributions include:

  • Mechanical Piezoelectric Metamaterials: Dr. Xu has developed signal processing methods for studying these materials, designed vibration modes, and explored vibration suspension using differential piezoelectric metamaterials.
  • Piezoelectric Impedance Structural Health Monitoring: His research involves advanced techniques such as tunable inductance enhanced 1D-CNN, deep learning/transformer-based monitoring, and temperature decoupling using piezoelectric impedance.
  • Gravity Wave Detection: Dr. Xu has worked on structural dynamics analysis and key technologies for mechanical differential measurement, utilizing deep learning for signal processing and denoising.
  • Piezoelectric Vibration Energy Harvesting: His work includes broadband energy harvesting, multi-directional harvesting by cantilever-pendulum systems, and enhancing power output density through strain smoothing effects.

Accolades and Recognition 🏅

Dr. Xu has been recognized for his contributions to the field of mechanical engineering through various prestigious awards and roles. He is a Fellow of the Jiangsu Instrumental Society and serves as the Deputy Director of the Youth Committee of the Jiangsu Instrumental Society. Additionally, he is an expert reviewer for several high-impact journals, including the IEEE Transactions on Industrial Electronics and the Journal of Applied Physics. His extensive publication record in leading journals further attests to his significant impact in the field.

Impact and Influence 🌟

Dr. Xu's research has had a profound impact on the fields of mechanical metamaterials and energy harvesting. His work on piezoelectric metamaterials and structural health monitoring has advanced the understanding and application of these technologies in various engineering contexts. His innovative approaches to energy harvesting and structural analysis have contributed to advancements in sustainable and efficient engineering solutions. Dr. Xu’s role as a reviewer and expert in several scientific communities highlights his influence in shaping the future of mechanical engineering research.

Legacy and Future Contributions 🔮

Dr. Xu’s ongoing research and leadership in the field of mechanical engineering continue to shape future advancements. His projects, such as those related to piezoelectric metamaterials and gravity wave detection, promise to push the boundaries of current technology and engineering practices. As he continues to explore new methodologies and applications, Dr. Xu is poised to leave a lasting legacy in the field, influencing both academic research and practical engineering solutions. His dedication to innovative research and his active role in professional societies ensure that his contributions will have a lasting impact on the engineering community.

 

Publications 📚


  • 📄 Modeling and Experimental Study of Vibration Energy Harvester with Triple-Frequency-Up Voltage Output by Vibration Mode Switching
    Authors: Jiawen Xu, Zhikang Liu, Wenxing Dai, Ru Zhang, Jianjun Ge
    Journal: Micromachines
    Year: 2024

  • 📄 Graded metamaterial with broadband active controllability for low-frequency vibration suppression
    Authors: Jian, Y., Hu, G., Tang, L., Huang, D., Aw, K.
    Journal: Journal of Applied Physics
    Year: 2024

  • 📄 Robustness analysis and prediction of topological edge states in topological elastic waveguides
    Authors: Tong, S., Sun, W., Xu, J., Li, H.
    Journal: Physica Scripta
    Year: 2024

  • 📄 Deep residual shrinkage network with multichannel VMD inputs for noise reduction of micro-thrust measurement
    Authors: Liu, Z., Chen, X., Xu, J., Zhao, L.
    Journal: AIP Advances
    Year: 2024

  • 📄 LiteFormer: A Lightweight and Efficient Transformer for Rotating Machine Fault Diagnosis
    Authors: Sun, W., Yan, R., Jin, R., Yang, Y., Chen, Z.
    Journal: IEEE Transactions on Reliability
    Year: 2024

 

Hathaikarn Manuspiya | Materials Science | Best Researcher Award

Prof Dr. Hathaikarn Manuspiya | Materials Science | Best Researcher Award 

The Petroleum and Petrochemical College, Chulalongkorn University | Thailand

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Hathaikarn Manuspiya embarked on her academic journey with a Bachelor's degree in Materials Science from Chulalongkorn University, Bangkok, Thailand, in 1994. She continued her studies in Polymer Science, earning a Master's degree from the Petroleum and Petrochemical College, Chulalongkorn University, in 1997. Pursuing her passion for materials engineering, Dr. Manuspiya received her Ph.D. from Pennsylvania State University, USA, in 2003, focusing on advanced materials science and engineering.

Professional Endeavors

Dr. Manuspiya's professional career is marked by a series of significant roles. From 2003 to 2004, she was a Visiting Researcher at the Materials Research Institute, Pennsylvania State University. She then joined the Petroleum and Petrochemical College at Chulalongkorn University as a Lecturer in 2004, progressing to Assistant Professor by 2006, Associate Professor by 2016, and finally Professor of Polymer Technology in 2018. Her administrative acumen is reflected in her roles as Associate Dean for Research Affairs (2012-2016) and Deputy Director (2016-2020) before becoming the Director of the Center of Excellence on Petrochemical and Materials Technology (PETROMAT) in 2021.

Contributions and Research Focus

Dr. Manuspiya's research is extensive and impactful, spanning ultrasonics, spectroscopy, molecular docking, and density functional theory. Her work in bacterial cellulose, advanced nanomaterials, and bio-additives has led to significant advancements in food packaging, energy storage, and biotechnology. She has led over 50 research projects with substantial funding and has mentored numerous Ph.D. and Master's students, contributing to the academic and professional growth of future scientists.

Accolades and Recognition

Throughout her career, Dr. Manuspiya has received numerous prestigious awards. Notable recognitions include the L'Oréal Thailand “For Women in Science” Fellowship (2011), Honorable Mention Awards from BioPlastics Innovation Contest (2016), and the Most Outstanding in Teaching Award by Chulalongkorn University (2016). In 2023, she was elected to the University Council of Phetchabun Rajabhat University and has been a vital member of various national and international committees.

Impact and Influence

Dr. Manuspiya's influence extends beyond her research. She has significantly contributed to open science through organizing conferences, panel discussions, and science exhibitions. Her consultancy work has facilitated the development of new polymer compounds and innovative industrial solutions, enhancing the practical applications of her research.

Legacy and Future Contributions

Dr. Manuspiya’s legacy is characterized by her dedication to advancing materials science and fostering the next generation of researchers. Her future contributions are expected to continue shaping the fields of petrochemical and polymer technology, with ongoing research projects aimed at sustainable and innovative solutions for industrial and environmental challenges.

 

Notable Publications

Fabrication of a colorimetric film based on bacterial cellulose/metal coordination framework composite for monitoring food spoilage gas 2023 (5)

Enabling high dielectric constant and low loss tangent in BaTiO3–epoxy composites through a 3D interconnected network structure of ceramic phase 2023 (1)

Superhydrophilic bacterial cellulose membranes efficiently separate oil-in-water emulsions 2023 (3)

Nanocomposite films of PLA/PBAT blends incorporated with porous clay heterostructure from mixed surfactant systems and their effect of temperature and pressure on dielectric properties 2023 (1)

Improvement of compatibility, mechanical, thermal and dielectric properties of poly(lactic acid) and poly(butylene adipate‐co‐terephthalate) blends and their composites with porous clay heterostructures from mixed surfactant systems 2022 (3)

 

 

 

Liuxian Zhao | Engineering | Best Researcher Award

Assoc Prof Dr. Liuxian Zhao | Engineering | Best Researcher Award

Hefei University of Technology | China

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Liuxian Zhao's journey in mechanical engineering began with a Bachelor's degree from Tianjin University of Science and Technology, China, in 2008. He then pursued two Master's degrees in Mechanical Engineering: the first in 2011 from Hefei University of Technology, China, focusing on the research of multi-step active disassembly methods, and the second in 2013 from the University of South Carolina, USA, where he explored ultrasound wave-based structural health monitoring. Dr. Zhao completed his Ph.D. in 2018 at the University of Notre Dame, USA, with a thesis on structural tailoring for tomographic damage detection, energy harvesting, and vibration control.

Professional Endeavors

Dr. Zhao's professional career includes significant academic and research positions. From 2015 to 2017, he was a Visiting Scholar at Purdue University, where he worked on frequency selective structures and structural health monitoring using electrical impedance tomography. As a Research Scientist at Nanyang Technological University from 2017 to 2018, he developed micro-/nano-scale porous materials for acoustic and vibrational impact mitigation. He then served as a Postdoctoral Research Associate at the University of Maryland from 2019 to 2022, focusing on structural Luneburg lenses for wave propagation manipulations. Currently, Dr. Zhao is an Associate Professor at Hefei University of Technology, where he explores acoustic metamaterials for enhanced sensing systems.

Contributions and Research Focus

Dr. Zhao's research interests encompass acoustic lenses, metamaterials, metasurfaces, phononic crystals, and acoustic black holes. His work on acoustic metamaterials aims to overcome limitations in detecting weak acoustic signals by enhancing signal-to-noise ratios. He has developed novel sensors and lenses for acoustic applications, contributing significantly to fields such as structural health monitoring, non-destructive testing, and energy harvesting. His research includes pioneering work on acoustic black holes for vibration control and energy harvesting.

Accolades and Recognition

Dr. Zhao's research excellence is reflected in his numerous publications and the prestigious grants he has secured. His work has been funded by notable institutions such as the National Nature Science Foundation of China (NSFC), the United States Department of Agriculture (USDA), and the US National Science Foundation (NSF). He has also served as a reviewer for various high-impact journals, further demonstrating his expertise and influence in the field of mechanical and acoustic engineering.

Impact and Influence

Dr. Zhao's contributions to the field of acoustic engineering have had a profound impact on both theoretical and applied aspects. His innovative approaches to manipulating wave propagation and improving acoustic sensing systems have advanced the capabilities of structural health monitoring and non-destructive evaluation. His work on Luneburg lenses and acoustic metamaterials has set new benchmarks in acoustic wave manipulation, influencing future research and technological developments.

Legacy and Future Contributions

Dr. Zhao's legacy is characterized by his innovative contributions to acoustic metamaterials and their applications. His ongoing research aims to further enhance acoustic sensing systems and explore new avenues in energy harvesting and vibration control. As an active researcher and educator, Dr. Zhao continues to inspire and mentor the next generation of engineers and scientists, ensuring that his pioneering work will have a lasting impact on the field of acoustic engineering.

 

Notable Publications

Super-resolution imaging based on modified Maxwell's fish-eye lens 2024 (1)

Resonant type Luneburg lens for broadband low frequency focusing 2024

Passive directivity detection of acoustic sources based on acoustic Luneburg lens 2023 (1)

Acoustic beam splitter based on acoustic metamaterial Luneburg lens 2023 (5)

A scalable high-porosity wood for sound absorption and thermal insulation 2023 (48)

 

 

 

 

 

 

Kun Chang | Materials Science | Best Researcher Award

Dr. Kun Chang | Materials Science | Best Researcher Award

Nanjing University of Aeronautics and Astronautics | China

Author Profile

Google Scholar

Early Academic Pursuits

Dr. Kun Chang embarked on his academic journey at Zhejiang University, earning his Ph.D. in Chemistry in 2012. His commitment to excellence began during his undergraduate studies at Henan Normal University, culminating in a solid foundation for his future research endeavors.

Professional Endeavors

Dr. Chang's international exposure started with a postdoctoral research fellowship at the University of Western Ontario, Canada. Subsequently, he contributed significantly as a researcher at the National Institute for Materials Science in Japan. Currently, he holds the prestigious position of Professor at Nanjing University of Aeronautics and Astronautics, showcasing his diverse and enriching professional journey.

Contributions and Research Focus

Renowned for his expertise in materials science, Dr. Chang's research revolves around innovative composite functional nanomaterials, solar-catalytic conversion materials, and energy storage materials. His pioneering work includes material structure and interface manipulation, catalysis, and the synthesis of functional nano-composite materials. His research impact extends to the development of technologies enhancing solar utilization and energy storage.

Accolades and Recognition

Dr. Chang's stellar contributions have garnered global recognition. As an Academician of the European Academy of Sciences and a member of the Chinese Thousand Young Talents Plan, he exemplifies excellence. His inclusion in the "Six Talent Peaks" High-level Talent Program and the "Changkong Elite" Talent Program reflects his standing as a distinguished professional. Notably, his work has been acknowledged in "China's Top 100 Most Influential International Academic Papers."

Impact and Influence

With an H-index of 52 and over 13,000 citations, Dr. Chang's influence is evident in the scientific community. His over 120 SCI papers in top-tier journals attest to the significance of his contributions. His research has advanced the fields of solar catalysis, energy conversion, and materials science, leaving a lasting impact on the academic landscape.

Legacy and Future Contributions

Dr. Kun Chang's legacy is marked by transformative research in materials science. His pioneering technologies in solar utilization and energy storage are foundational. As he continues to lead projects, mentor future scholars, and innovate in materials science, Dr. Chang's legacy is poised for enduring contributions to sustainable energy and materials research.

Notable Publications

Boost of solar water splitting on SrTiO3 by designing V-ions center for localizing defect charge to suppress deep trap 2023 (2)

Mechanistic Understanding of Alkali‐Metal‐Ion Effect on Defect State in SrTiO3 During the Defect Engineering for Boosting Solar Water Splitting 2023 (7)

Understanding targeted modulation mechanism in SrTiO3 using K+ for solar water splitting 2022 (14)

La,Al-Codoped SrTiO3 as a Photocatalyst in Overall Water Splitting: Significant Surface Engineering Effects on Defect Engineering 2021 (45)

In Situ Assembly of MoSx Thin‐Film through Self‐Reduction on p‐Si for Drastic Enhancement of Photoelectrochemical Hydrogen Evolution 2020 (25)