Milena Ignatova | Chemistry | Best Researcher Award

Prof. Milena Ignatova | Chemistry | Best Researcher Award

Institute of Polymers, Bulgarian Academy of Science | Bulgaria

Prof. Milena Ignatova is a distinguished researcher at the Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences (IP-BAS). Her prolific scientific career is reflected through 56 publications, cited 2,615 times by 2,070 documents, with an impressive h-index of 27. Her work primarily focuses on the design and synthesis of functional polymer materials derived from renewable and biodegradable sources. She has made remarkable contributions in developing electrospun nanofibrous and hybrid polymer materials with antibacterial, antioxidant, and anticancer properties. Prof. Ignatova has played a leading role in national and international research projects, including one as a principal investigator funded by the National Science Fund. Her research integrates polymer chemistry, nanotechnology, and biomedical applications to create multifunctional materials with potential uses in drug delivery, wound healing, and tissue engineering. Her studies on chitosan-, polylactide-, and poly(vinyl alcohol)-based electrospun fibers incorporating bioactive compounds such as rosmarinic acid and lidocaine have advanced the field of bioactive and smart materials. Through continuous innovation and international collaboration, Prof. Ignatova has established herself as a leading figure in polymer science, significantly contributing to the advancement of sustainable and biomedical polymer technologies.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

Ignatova, M., Paneva, D., Kyuchyuk, S., Manolova, N., Rashkov, I., Mourdjeva, M., & Markova, N. (2025). Multifunctional electrospun materials from poly(vinyl alcohol)/chitosan and polylactide incorporating rosmarinic acid and lidocaine with antioxidant and antimicrobial properties. Polymers, 17(19), 2657.

Anastasova, I., Ignatova, M., Manolova, N., Rashkov, I., Markova, N., Toshkova, R., Georgieva, A., Kamenova-Nacheva, M., Trendafilova, A., & Ivanova, V. (2024). Chitosan/hyaluronate complex-coated electrospun poly(3-hydroxybutyrate) materials containing extracts from Melissa officinalis and/or Hypericum perforatum with various biological activities: Antioxidant, antibacterial and in vitro anticancer effects. Polymers, 16(15), 2105.

Anastasova, I., Tsekova, P., Ignatova, M., & Stoilova, O. (2024). Imparting photocatalytic and antioxidant properties to electrospun poly(L-lactide-co-D,L-lactide) materials. Polymers, 16(13), 1814.

Ignatova, M., Manolova, N., Rashkov, I., Georgieva, A., Toshkova, R., & Markova, N. (2023). 5-Amino-8-hydroxyquinoline-containing electrospun materials based on poly(vinyl alcohol) and carboxymethyl cellulose and their Cu²⁺ and Fe³⁺ complexes with diverse biological properties: Antibacterial, antifungal and anticancer. Polymers, 15(14), 3140.

Spasova, M., Stoyanova, N., Nachev, N., Ignatova, M., Manolova, N., Rashkov, I., Georgieva, A., Toshkova, R., & Markova, N. (2023). Innovative fibrous materials loaded with 5-nitro-8-hydroxyquinoline via electrospinning/electrospraying demonstrate antioxidant, antimicrobial and anticancer activities. Antioxidants, 12(6), 1243.

Ignatova, M., Anastasova, I., Manolova, N., Rashkov, I., Markova, N., Kukeva, R., Stoyanova, R., Georgieva, A., & Toshkova, R. (2022). Bio-based electrospun fibers from chitosan Schiff base and polylactide and their Cu²⁺ and Fe³⁺ complexes: Preparation and antibacterial and anticancer activities. Polymers, 14(22), 5002.

Ignatova, M., Nachev, N., Spasova, M., Manolova, N., Rashkov, I., & Naydenov, M. (2022). Electrospun 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol)-containing poly(3-hydroxybutyrate)/polyvinylpyrrolidone antifungal materials prospective as active dressings against Esca. Polymers, 14(3), 367.

Ignatova, M., Manolova, N., Rashkov, I., Markova, N., Kukeva, R., Stoyanova, R., Georgieva, A., & Toshkova, R. (2021). 8-Hydroxyquinoline-5-sulfonic acid-containing poly(vinyl alcohol)/chitosan electrospun materials and their Cu²⁺ and Fe³⁺ complexes: Preparation, antibacterial, antifungal and antitumor activities. Polymers, 13(16), 2690.

Ignatova, M., Stoyanova, N., Manolova, N., Rashkov, I., Kukeva, R., Stoyanova, R., Toshkova, R., & Georgieva, A. (2020). Electrospun materials from polylactide and Schiff base derivative of Jeffamine ED® and 8-hydroxyquinoline-2-carboxaldehyde and its complex with Cu²⁺: Preparation, antioxidant and antitumor activities. Materials Science and Engineering C, 111, 111185.

Stoyanova, N., Ignatova, M., Manolova, N., Rashkov, I., Toshkova, R., & Georgieva, A. (2020). Nanoparticles based on complex of berberine chloride and polymethacrylic or polyacrylic acid with antioxidant and in vitro antitumor activities. International Journal of Pharmaceutics, 119, 119426.

Ignatova, M., Manolova, N., Rashkov, I., & Markova, N. (2018). Antibacterial and antioxidant electrospun materials from poly(3-hydroxybutyrate) and polyvinylpyrrolidone containing caffeic acid phenethyl ester: “In” and “on” strategies for enhanced solubility. International Journal of Pharmaceutics, 548, 13–25.

Tianyuan Xiao | Chemistry | Best Researcher Award

Prof. Tianyuan Xiao | Chemistry | Best Researcher Award

Qiqihar University | China

Prof. Tianyuan Xiao is a distinguished researcher with a strong record of contributions to materials chemistry and sustainable energy research, having published 32 scientific documents that have garnered 247 citations , reflecting an h-index of 9. His research primarily explores deep eutectic solvents (DES), lignin nanoparticles, covalent adaptive networks, flame retardant materials, and lignin-based adhesive hydrogels, with an additional focus on density functional theory (DFT) for molecular modeling and analysis. Prof. Xiao’s studies are driven by the pursuit of sustainable and high-performance materials derived from lignocellulosic biomass. His recent influential works include “Recent Progress in Deep Eutectic Solvent (DES) Fractionation of Lignocellulosic Components: A Review” published in Renewable and Sustainable Energy Reviews and “Cracking Aryl Ether Bonds of Lignin by Gamma-Valerolactone (GVL) in Coordination with Acid Lithium Bromide Molten Salt System” in the International Journal of Biological Macromolecules. Through his research, Prof. Xiao has significantly advanced understanding of biomass valorization, solvent design, and green chemistry, offering novel insights into environmentally friendly processes for energy and materials innovation.

Profile : Scopus

Featured Publications

Xiao, T., Song, J., Jia, W., Sun, Y., Guo, Y., Fatehi, P., & Shi, H. (2025). Cracking aryl ether bonds of lignin by γ-valerolactone (GVL) in coordination with acid lithium bromide molten salt system. International Journal of Biological Macromolecules, 309(Part 1), 142643.

Xiao, T., Hou, M., Guo, X., Cao, X., Li, C., Zhang, Q., Jia, W., Sun, Y., Guo, Y., & Shi, H. (2024). Recent progress in deep eutectic solvent (DES) fractionation of lignocellulosic components: A review. Renewable and Sustainable Energy Reviews, 192, 114243.

Sergio Manzetti | Mathematics | Best Researcher Award

Dr. Sergio Manzetti | Mathematics | Best Researcher Award

Linnaeus University | France

Dr. Sergio Manzetti is a distinguished researcher whose interdisciplinary work bridges mathematics, quantum information theory, and nanotechnology. With an h-index of 26, 4,946 citations, and numerous scholarly documents, his research demonstrates both depth and global impact. His expertise spans mathematical analysis, Fourier analysis of partial differential equations (PDEs), quantum chemistry, computational systems, and nonlinear dynamics, contributing significantly to the understanding of quantum systems and wave phenomena. Dr. Manzetti’s academic foundation includes advanced degrees from Uppsala University, Linnaeus University, Queensland University of Technology, and Oslo University College, where he specialized in the mathematical and physical sciences. His professional experience is equally impressive—serving as an EU expert for Marie-Curie Fellowships, AI prompt reviewer at Mercor Intelligence, and researcher at Fjord-Research AS. He has co-authored influential publications in Analysis and Mathematical Physics, Advanced Theory and Simulations, and RSC Advances, addressing topics from eigenvalue problems of non-self-adjoint operators to supersymmetric wave equations and nanomaterial design. Skilled in Python, Mathematica, and MATLAB, Dr. Manzetti combines theoretical rigor with computational precision. His contributions to quantum information systems, rogue wave modeling, and nanotechnology continue to advance interdisciplinary research, positioning him as a leading figure in applied mathematics and theoretical chemistry.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

Manzetti, S., & Khrennikov, A. (2025, September 28). Quantum and topological dynamics of GKSL equation in camel-like framework. Entropy.

Manzetti, S. (2025, September 22). Geometric formalism for quantum entanglement via B³ and S⁰ mappings. Preprint.

Manzetti, S., & Khrennikov, A. (2025, July 11). Quantum and topological dynamics of the GKSL equation in the camel-like framework. Preprint.

Kumar, R., Hiremath, K. R., & Manzetti, S. (2024, April). A primer on eigenvalue problems of non-self-adjoint operators. Analysis and Mathematical Physics.

Manzetti, S. (2021). Spectral properties of non-self adjoint operators: A review of the recent literature. Unpublished manuscript.

Kamerlin, N., Delcey, M. G., Manzetti, S., & van der Spoel, D. (2020, August 24). Toward a computational ecotoxicity assay. Journal of Chemical Information and Modeling.

Manzetti, S., & Trounev, A. (2020, January). Analytical solutions for a supersymmetric wave-equation for quasiparticles in a quantum system. Advanced Theory and Simulations.

Manzetti, S. (2020, January). Electromagnetic vorticity in a square-well crystal system described by a supersymmetric wave-equation. Advanced Theory and Simulations.

Ghisi, R., Vamerali, T., & Manzetti, S. (2019). Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environmental Research.

van der Spoel, D., Manzetti, S., Zhang, H., & Klamt, A. (2019, August 27). Prediction of partition coefficients of environmental toxins using computational chemistry methods. ACS Omega.

Manzetti, S., & Gabriel, J.-C. P. (2019, March 2). Methods for dispersing carbon nanotubes for nanotechnology applications: Liquid nanocrystals, suspensions, polyelectrolytes, colloids and organization control. International Nano Letters.

Manzetti, S., & Trounev, A. (2019, May). Supersymmetric Hamiltonian and vortex formation model in a quantum nonlinear system in an inhomogeneous electromagnetic field. Advanced Theory and Simulations.

Behzadi, H., Manzetti, S., Dargahi, M., Roonasi, P., & Khalilnia, Z. (2018). Application of calculated NMR parameters, aromaticity indices and wavefunction properties for evaluation of corrosion inhibition efficiency of pyrazine inhibitors. Journal of Molecular Structure.

Manzetti, S. (2018). Applied quantum physics for novel quantum computation approaches: An update. Computational Mathematics and Modeling.

Manzetti, S. (2018). Mathematical modeling of rogue waves, a review of conventional and emerging mathematical methods and solutions. Preprint.

Manzetti, S. (2018, November 8). Derivation and numerical analysis of an attenuation operator for non-relativistic waves. Scientific Reports.

Manzetti, S., & Lu, T. (2018, August 20). Addendum: Solvation energies of butylparaben, benzo[a]pyrene diol epoxide, perfluorooctanesulfonic acid, and DEHP in complex with DNA bases. Chemical Research in Toxicology.

Manzetti, S. (2018, June 20). Mathematical modeling of rogue waves: A survey of recent and emerging mathematical methods and solutions. Axioms.

Jie Wang | Materials Science | Best Researcher Award

Prof. Jie Wang | Materials Science | Best Researcher Award

Qingdao Agricultural University | China

Prof. Jie Wang is an accomplished scholar in materials science, specializing in the design and construction of functional materials with applications in renewable energy, electrocatalysis, and advanced energy storage systems. He has authored over 100 publications in leading international journals, which have collectively garnered more than 6,580 citations, reflecting his significant research impact with an impressive h-index of 47. His research contributions span electrocatalysis for zinc-air and lithium-ion batteries, oxygen evolution and reduction reactions, water splitting, and the rational design of nanostructured materials such as transition metal sulfides, perovskites, and metal-organic frameworks. Prof. Wang has undertaken collaborative research at globally recognized institutions and serves as a corresponding or first author on numerous high-impact studies published in journals such as Advanced Materials, Advanced Functional Materials, Journal of Materials Chemistry A, and Energy Storage Materials. His work has been recognized through prestigious awards including multiple provincial and national-level prizes in natural science and outstanding research achievements. Alongside his publications, he has successfully led several major national and regional research grants focused on energy storage, electrocatalysis, and sustainable materials development. Through his extensive scholarly output, mentorship, and innovative research directions, Prof. Jie Wang continues to make influential contributions to advancing materials science and energy technologies.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

Author, A. A., Author, B. B., & Author, C. C. (2025). Porous carbon with predominant graphitic nitrogen and abundant defects mediated by reductive molten salt enables boosted sulfur conversion for room-temperature sodium-sulfur batteries. Chemical Engineering Journal.

Author, A. A., Author, B. B., & Author, C. C. (2025). Enhancing oxygen evolution electrocatalysis in heazlewoodite: Unveiling the critical role of entropy levels and surface reconstruction. Advanced Materials.

Author, A. A., Author, B. B., & Author, C. C. (2025). Optimizing aqueous zinc-sulfur battery performance via regulating acetonitrile co-solvents and carbon nanotube carriers. ChemSusChem.

Author, A. A., Author, B. B., & Author, C. C. (2025). Homogeneous bismuth dopants regulate cerium oxide structure to boost hydrogen peroxide electrosynthesis via two-electron oxygen reduction. Inorganic Chemistry Frontiers.

Author, A. A., Author, B. B., & Author, C. C. (2025). Promoting effect of copper doping on LaMO₃ (M = Mn, Fe, Co, Ni) perovskite-supported gold catalysts for selective gas-phase ethanol oxidation. Catalysts.

Author, A. A., Author, B. B., & Author, C. C. (2025). Structural regulation of NiFe LDH under spontaneous corrosion to enhance the oxygen evolution properties. ChemSusChem.

Author, A. A., Author, B. B., & Author, C. C. (2025). Exploring the efficiency of N, N-dimethylformamide for aqueous zinc-sulfur batteries. Science China Chemistry.

Author, A. A., Author, B. B., & Author, C. C. (2024). Expediting corrosion engineering for sulfur-doped, self-supporting Ni-Fe layered dihydroxide in efficient aqueous oxygen evolution. Catalysts.

Author, A. A., Author, B. B., & Author, C. C. (2024). Rational design of electrolyte additives for improved solid electrolyte interphase formation on graphite anodes: A study of 1,3,6-hexanetrinitrile. Energies.

Author, A. A., Author, B. B., & Author, C. C. (2024). Phase modulation of nickel-tin alloys in regulating electrocatalytic nitrogen reduction properties. Rare Metals.

Sanae Zriouel | Materials Science | Women Research Award

Prof. Sanae Zriouel | Materials Science | Women Research Award

Cadi Ayyad University | Morocco

Prof. Sanae Zriouel is an accomplished physicist with a strong research footprint, boasting 18 documents, 188 citations, and an h-index of 9. Her research encompasses graphene and related materials, physics of two-dimensional nanostructures, topological insulators, chalcopyrite semiconductors, perovskite structures, mathematical physics, and quantum and statistical physics, employing advanced numerical simulations including ab-initio calculations, DFT, Green functions, Monte Carlo, and molecular dynamics. She currently serves as Associate Professor of Physics at Cadi Ayyad University, Morocco, after holding positions as Assistant Professor at Sultan Moulay Slimane University and Researcher at Mohammed V University. Prof. Zriouel has a PhD in Mathematical Physics and a Habilitation Universitaire (HDR), complemented by engineering and bachelor degrees in electro-mechanics, physical sciences, and English studies. She has been recognized with numerous awards including full membership in OWSD and multiple national and international research honors. Prof. Zriouel has supervised over 30 master’s and bachelor students, contributed extensively to academic and research committees, coordinated national and international projects, and actively participated in more than 80 conferences. Her work in quantum materials, nanostructures, and simulations has significantly advanced theoretical and applied physics, reflecting her impact in the scientific community through research, mentorship, and collaborative projects worldwide.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

Amzaoued, M., Zriouel, S., & Mabrouki, M. (2025). DFT computational modeling studies of electronic and magnetic features of transition metal doped ZnTe. Physics Open, 24, 100275.

Ahsan, J., Rather, M., Sultan, K., Zriouel, S., & Hlil, E. (2025). In-depth study of double perovskite Sr₂NiTaO₆: Structural, electronic, thermoelectric, and spintronic properties for sustainable and high-performance applications. Computational Condensed Matter, 43, e01026.

Zriouel, S., Mhirech, A., Kabouchi, B., Bahmad, L., Fadil, Z., Husain, F., & Raorane, C. (2025). Investigating thermodynamic and magnetic behavior of graphullerene-like nanostructure using Monte Carlo techniques. Philosophical Magazine, 1–14.

Saber, N., Zriouel, S., Mhirech, A., Kabouchi, B., Bahmad, L., & Fadil, Z. (2023). Magnetic properties and magnetocaloric effects of the graphullerene-like 4−(Mg₄C₆₀) nanostructure: A Monte Carlo study. Modern Physics Letters B, 38, 2350199.

Zriouel, S., & Jellal, A. (2022). Engineering quantum tunneling effect of carriers in silicene field-effect transistors. arXiv preprint arXiv:2212.06072.

Zriouel, S. (2021). Phase transitions and critical dielectric phenomena of janus transition metal oxides. Materials Science and Engineering B, 267, 115087.

Zriouel, S., et al. (2020). Effect of p−d hybridization on half-metallic properties of some diluted II−IV−V₂ chalcopyrites for spintronic applications. Physica Scripta, 95, 045809.

Zriouel, S. (2020). Phase transitions and compensation behavior of graphene-based Janus materials. Journal of Magnetism and Magnetic Materials, 493, 165711.

Taychour, B., Zriouel, S., & Drissi, B. (2018). Half-metallic ferromagnetic character in ZnXP₂ (X = Ge, Si) chalcopyrites doped with Mn. Journal of Superconductivity and Novel Magnetism, 1–7.

Saidi, S., Zriouel, S., Drissi, B., & Maaroufi, M. (2018). First principles study of electronic and optical properties of Ag₂CdSnS₄ chalcogenides for photovoltaic applications. Computational Materials Science, 152, 291–299.

Saidi, S., Zriouel, S., Drissi, B., & Maaroufi, M. (2018). A DFT study of electro-optical properties of kesterite Ag₂CdSnX₄ for photovoltaic applications. Physica E, 103, 171–179.

 

Visakh P M | Chemistry | Lifetime Achievement in Books Award

Dr. Visakh P M | Chemistry | Lifetime Achievement in Books Award

Mahatma Gandhi University | India

Author profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Visakh P. M began his academic journey in polymer chemistry at the School of Chemical Sciences, Mahatma Gandhi University in Kerala, India, where he completed his master’s, MPhil, and doctoral studies. His early training in chemistry laid the foundation for his specialization in polymer science and nanocomposites. His research during these years focused on bio-nanomaterials and advanced polymer systems, providing him with the skills and vision to expand into cutting-edge materials science.

Professional Endeavors

Following his doctoral studies, Dr. Visakh embarked on a global research career. He pursued postdoctoral research at Tomsk Polytechnic University in Russia, later serving as Associate Professor at TUSUR University, Tomsk. His career has since extended to his current role at the Natural Bioactive Materials Laboratory, Department of Bioengineering, Ege University, Turkey. Alongside these appointments, he has engaged in visiting research positions at institutions across Europe and South America, highlighting his international academic presence and collaborations.

Contributions and Research Focus

Dr. Visakh’s research contributions span polymer sciences, nanocomposites, material sciences, bio-nanocomposites, fire-retardant polymers, and liquid crystalline polymers. His work combines fundamental and applied research, advancing knowledge in sustainable materials, sensor development, and high-performance composites. His editorial leadership in producing dozens of books with leading international publishers further reflects his commitment to advancing global scientific discourse.

Accolades and Recognition

Dr. Visakh’s scientific impact has been recognized widely. He has been listed among the World’s Top 2% Scientists by Stanford University for consecutive years, a testament to his citation record, h-index, and influence in materials science. He has received numerous fellowships and research grants, including prestigious national and international awards supporting his advanced studies and collaborations across multiple countries.

Impact and Influence

Through his prolific output of over 50 edited volumes, numerous research articles, and book chapters, Dr. Visakh has shaped the global understanding of polymers and nanomaterials. His contributions extend beyond research to mentoring and academic leadership, as seen in his guest editorial roles for international journals. His ability to connect science with real-world applications has impacted fields ranging from sustainable material development to advanced industrial and biomedical uses.

Legacy and Future Contributions

Dr. Visakh’s legacy lies in his blend of scholarly productivity and global engagement. His editorial work has created lasting resources for researchers, while his scientific contributions continue to inspire advancements in polymer and nanoscience. Looking forward, his ongoing research in bio-nanocomposites and material applications in medicine, energy, and sustainability is set to expand both his personal impact and the reach of polymer science worldwide.

Publications


Article: Improvement of the Thermal Behaviour of Epoxy/Fe Nanoparticle Composites by the Addition of Flame Retardants
Authors: Nazarenko, O.B., Visakh, P.M., Amelkovich, Y.A. et al.
Journal: Journal of Inorganic and Organometallic Polymers and Materials
Year: 2025


Article: Thermal Stability and Flammability of Epoxy Composites Filled with Multi-Walled Carbon Nanotubes, Boric Acid, and Sodium Bicarbonate
Authors: Olga B. Nazarenko, Yulia A. Amelkovich, Alexander G. Bannov, Irina S. Berdyugina, Visakh P. Maniyan
Journal: Polymers
Year: 2021


Article: Mechanical and Thermal Properties of Moringa oleifera Cellulose-Based Epoxy Nanocomposites
Authors: Nadir Ayrilmis, Ferhat Ozdemir, Olga B. Nazarenko, P. M. Visakh
Journal: Journal of Composite Materials
Year: 2019


Article: Effect of Boric Acid on Thermal Behavior of Copper Nanopowder/Epoxy Composites
Authors: Olga B. Nazarenko, Alexander I. Sechin, Tatyana V. Melnikova, P. M. Visakh
Journal: Journal of Thermal Analysis and Calorimetry
Year: 2018


Article: Effect of Electron Beam Irradiation on Thermal and Mechanical Properties of Aluminum Based Epoxy Composites
Authors: Visakh P. M., O.B. Nazarenko, C. Sarath Chandran, T.V. Melnikova, S. Yu. Nazarenko, J.-C. Kim
Journal: Radiation Physics and Chemistry
Year: 2017


Conclusion

Dr. Visakh P. M is a globally recognized scholar whose career exemplifies dedication to research, teaching, and scientific dissemination. From his foundational work in polymer chemistry to his international collaborations and extensive editorial contributions, he has built a profile that reflects excellence, leadership, and innovation. His influence in polymer and nanomaterials research, combined with recognition as one of the world’s leading scientists, ensures that his legacy will continue to guide future discoveries and shape advancements across multiple domains of science.

Shadi Hassanajili | Chemical Engineering | Best Researcher Award

Prof. Dr. Shadi Hassanajili | Chemical Engineering | Best Researcher Award

Shiraz University | Iran

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Prof. Dr. Shadi Hassanajili laid a strong foundation in the field of chemical and polymer engineering through her studies at leading Iranian universities. Her academic journey began with a bachelor’s degree in chemical engineering, where she investigated the use of PVC plastisol as a synthetic leather material. She advanced her specialization with a master’s degree in polymer engineering, focusing on polyurethane and polypropylene blends for blood bag materials. Her doctoral research in polymer engineering at Tarbiat Modares University centered on polyurethane and polycaprolactone blends as cardiovascular implants, marking the beginning of her lifelong engagement with biomedical materials and polymeric innovations.

Professional Endeavors

Over the years, Prof. Hassanajili has held several significant academic and administrative positions at Shiraz University. Her career began as an assistant professor and evolved into leadership roles such as Head of the Department of Chemical Engineering and Vice Chancellor for Education and Graduate Studies. Rising to the rank of professor, she has made lasting contributions to teaching and institutional development. Her long-standing commitment to higher education reflects her ability to balance research, leadership, and mentoring with excellence.

Contributions and Research Focus

Prof. Hassanajili’s research spans a wide range of areas including biomedical materials, rheology of polymers, nanocomposites, polymeric membranes for gas separation, and ferrofluids for oil spill remediation. She has pioneered work in developing smart polymeric stents with anticoagulation properties, self-healing coatings for anti-corrosion, and nanocomposite gels for water management in hydrocarbon reservoirs. Her patents in polymer-coated nanoparticles, gas separation membranes, and oil pollution devices highlight her innovative approach to solving industrial and environmental challenges. Her research reflects a deep integration of polymer science with healthcare, energy, and environmental applications.

Accolades and Recognition

Throughout her career, Prof. Hassanajili has been recognized for academic excellence and innovation. She graduated with distinction at both the bachelor’s and master’s levels, earning top ranks in her field, and received the prestigious Excellent PhD Thesis Award. Her recognition extends to her patents and funded projects, which showcase her ability to translate research into impactful technological solutions. These honors underscore her standing as a leading figure in polymer and chemical engineering.

Impact and Influence

Prof. Hassanajili has had a profound influence on both academic and industrial spheres. Her work in polymer-based biomedical applications has advanced knowledge in cardiovascular implants, scaffolds, and wound-healing technologies. In the energy sector, her contributions to enhanced oil recovery, polymer-enriched water systems, and nanocomposites have improved efficiency and sustainability. Her teaching of core courses in thermodynamics, rheology, polymer engineering, and fluid mechanics has shaped generations of chemical engineers, while her leadership roles have strengthened Shiraz University’s position in scientific research and education.

Legacy and Future Contributions

The legacy of Prof. Hassanajili lies in her ability to bridge fundamental polymer science with applied engineering for human health, industry, and the environment. Her patents, publications, and collaborative projects with national industries demonstrate her forward-looking vision. With continued engagement in nanomedicine, self-healing materials, and environmentally responsive polymers, her future contributions are poised to further impact healthcare innovations and sustainable engineering practices.

Publications


  • Thermal and mechanical enhancement of poly (methyl methacrylate) microcapsules using multi-walled carbon nanotubes and hydrophobic silica nanoparticles
    Authors: Abed Khavand, Fereshteh Ayazi, Shadi Hassanajili
    Journal: Journal of Molecular Liquids
    Year: 2025


  • Fabrication of rapid self-healing thermoset polymer by the encapsulation of low-viscosity unsaturated vinyl ester resin and methyl ethyl ketone peroxide for the corrosion
    Authors: A. Khavand, S. Hassanajili
    Journal: Polymer Bulletin
    Year: 2024


  • Development and characterization of bio-based polyurethane flexible foams containing silver nanoparticles for efficient dermal healing application
    Authors: M.M. Soltanzadeh, M.R. Hojjati, S. Hassanajili, A.A. Mohammadi
    Journal: New Journal of Chemistry
    Year: 2024


  • Enhanced Natural Gas Sweetening with Ultralow H₂S Concentration via Polycarbonate-Silica Mixed Matrix Membranes
    Authors: R. Sadeghi, S. Hassanajili
    Journal: Korean Journal of Chemical Engineering
    Year: 2024


  • Zoledronate loaded polylactic acid/polycaprolactone/hydroxyapatite scaffold accelerates regeneration and led to enhance structural performance and functional ability of the radial bone defect in rat
    Authors: A. Oryan, S. Hassanajili, S. Sahvieh
    Journal: Iranian Journal of Veterinary Research
    Year: 2023


Conclusion

Prof. Dr. Shadi Hassanajili represents an exceptional blend of academic brilliance, pioneering research, and institutional leadership. From her early academic pursuits in chemical and polymer engineering to her current role as a professor and innovator, she has consistently advanced the boundaries of knowledge. Her contributions in biomedical polymers, nanocomposites, and environmental applications reflect both scientific depth and societal relevance. Her career stands as a testament to the role of dedicated scholarship in driving innovation, inspiring students, and shaping industries.

 

Nikhil Y G | Chemistry | Best Researcher Award

Mr. Nikhil Y G | Chemistry | Best Researcher Award

Maharaja Institute of Technology Mysore | India

Author Profile

Orcid

Google Scholar

Early Academic Pursuits

Mr. Nikhil Y G laid the foundation of his scientific career with a strong focus on chemistry. Beginning with a bachelor’s degree in chemistry, physics, and mathematics, he developed a deep interest in the experimental and analytical aspects of science. His academic journey progressed with a master’s degree in general chemistry, which honed his understanding of chemical synthesis, analytical techniques, and experimental validation. This strong academic base eventually led him to pursue doctoral research in analytical chemistry, where he deepened his expertise in material science, nanotechnology, and bioanalytical studies.

Professional Endeavors

His career trajectory demonstrates a balance of both research and teaching. With several years of teaching experience at reputed institutions, he contributed to shaping young minds in chemistry and related fields. Alongside teaching, his doctoral research at Visvesvaraya Technological University and Maharaja Institute of Technology Mysuru allowed him to explore frontier areas such as nanoparticle synthesis, enzyme-mimicking behavior, and battery technology. His role as a mentor and tutor also highlights his dedication to education beyond formal classrooms.

Contributions and Research Focus

The core of Mr. Nikhil’s research lies in the synthesis of metal-based and metal-doped nanoparticles and the study of their biological and catalytic properties. His investigations into the enzyme-like activities of nanomaterials have opened new pathways for bioanalytical sensing and diagnostic applications. He has developed analytical methods for enzyme detection, validated through kinetic studies, and has extended his research into emerging areas such as energy storage and battery technology. His work embodies the integration of nanoscience with healthcare and energy solutions.

Academic Publications and Research Dissemination

Mr. Nikhil has authored multiple peer-reviewed articles that reflect his contributions to nanotechnology, bio-catalysis, and analytical chemistry. His publications include studies on vanadium oxide nanozymes as glucose sensors, tungsten oxide nanoparticles mimicking peroxidase activity, and copper oxide nanomaterials with biomedical potential. Additionally, his collaborative work on spectrophotometric methods for hemoglobin detection and hydrogen peroxide quantification demonstrates his versatility in applied analytical chemistry. His manuscripts under review further indicate his continuing momentum in impactful research.

Accolades and Recognition

His scholarly efforts have been acknowledged through acceptance in reputed journals such as Biochemical and Biophysical Research Communications, Nano-Structures & Nano-Objects, and Chemical Science Review and Letters. His ability to combine innovation in nanomaterial synthesis with practical applications in diagnostics and environmental monitoring has established him as a promising researcher in his field. His contributions are also recognized through collaborative work with peers and mentors, underscoring his ability to work across interdisciplinary domains.

Impact and Influence

The significance of his research lies in its dual impact on science and society. His work on nanozyme-based systems provides cost-effective and efficient alternatives to natural enzymes, with potential applications in healthcare diagnostics, environmental monitoring, and food safety. By validating these methods in real samples such as serum, water, vegetables, and milk, he bridges the gap between laboratory innovation and real-world application. His current exploration in battery technology signals his adaptability and vision to contribute to sustainable energy solutions, further extending the societal relevance of his work.

Legacy and Future Contributions

Looking ahead, Mr. Nikhil’s work holds promise in advancing the fields of nanozymes, bioanalytical chemistry, and renewable energy. His future contributions are expected to strengthen the applications of nanomaterials in medical diagnostics and green technologies. His commitment to both teaching and research ensures that his legacy will be carried forward not only through his publications and innovations but also through the students and researchers he mentors.

Publications


Article: Oxygen deficient MoO₃ nanoparticles as peroxidase substitutes, their substrate-nanozyme interactions and real time validation in human serum sample
Authors: Nikhil Y. Gangadhara, Manju B, P. Kiran Kumar, Avinash Krishnegowda, Honnur Krishna, K.S. Mahesh Lohith, Ravishankar H. Sadashivanna, Raghavendra Ravikumar
Journal: Journal of Pharmaceutical and Biomedical Analysis
Year: 2025


Article: Evaluation of peroxidase mimicking behaviour of V₂O₅ nanozymes with various morphologies and its application as glucose sensor via cascade mechanism in human serum samples
Authors: Nikhil Y. Gangadhara, Manju B, P. Kiran Kumar, Honnur Krishna, Anantharaman Shivakumar, Ravishankar H. Sadashivanna, Avinash Krishnegowda
Journal: Biochemical and Biophysical Research Communications
Year: 2025


Article: Oxalic acid capped tungsten oxide nanozyme mimicking peroxidase activity, its synthesis characterization, and kinetic data validation via spectrophotometric studies
Authors: Ravishankar H. Sadashivanna, Honnur Krishna, Anantharaman Shivakumar, Nikhil Y. Gangadhara, K.S. Mahesh Lohith, Avinash Krishnegowda
Journal: Nano-Structures & Nano-Objects
Year: 2024


Article: Analytical Determination of Hemoglobin by Spectrophotometric Method
Authors: Nikhil Y. G.
Journal:  Grenze Scientific Society Proceedings
Year: 2023


Article: Fe₃O₄ Nano Particle Catalysed Spectrophotometric Method for the Quantification of Hydrogen Peroxide using Pyrocatechol and 3-Methyl-2 Benzothiazolinehydrazone Hydrochloride: Applications in Water, Vegetables and Milk samples
Authors: Nikhil Y. G.
Journal: Chemical Science Review and Letters
Year: 2017


Conclusion

Mr. Nikhil Y G stands as an emerging researcher who has combined academic excellence, innovative research, and teaching experience to build a promising career in analytical chemistry and nanotechnology. His achievements in nanoparticle synthesis, enzyme-mimicking studies, and analytical method development highlight both his technical expertise and his vision for socially relevant science. With his expanding focus into battery technology, his contributions are poised to impact both healthcare and sustainable energy sectors, making him a valuable contributor to the scientific community and a strong candidate for recognition as a best researcher.

Hafiz Mohammad Hasan Babu | Computer Science | Lifetime Achievement in Books Award

Prof. Hafiz Mohammad Hasan Babu | Computer Science | Lifetime Achievement in Books Award

University of Dhaka | Bangladesh

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Prof. Hafiz Mohammad Hasan Babu began his academic journey in the realm of computer science and engineering with a strong foundation from the Brno University of Technology, Czech Republic, where he completed his M.Sc. with a focus on logic network automation. His curiosity for advanced computational systems took him to the Kyushu Institute of Technology in Japan, where he earned his Ph.D. in Computer Science and Electronics. His doctoral work concentrated on data structures for multiple-output functions and their applications in VLSI CAD, under the guidance of Prof. Dr. Tsutomu Sasao. These formative years laid the groundwork for his future innovations in quantum computing, reversible logic, and nanotechnology.

Professional Endeavors

Prof. Hasan Babu's academic career spans several decades and institutions, notably the University of Dhaka, where he served in various capacities, including as professor in the departments of Computer Science and Engineering, and Robotics and Mechatronics Engineering. His early academic roles also included positions at Khulna University. He has been deeply involved in curriculum development, student mentorship, and departmental leadership. Beyond teaching, he also contributed significantly as a research supervisor and played a critical role in developing the academic and research culture of computer science in Bangladesh.

Contributions and Research Focus

A prolific researcher, Prof. Hasan Babu has made groundbreaking contributions in the fields of quantum computing, reversible logic design, DNA computing, and machine learning applications in healthcare and agriculture. His interdisciplinary research integrates electronics, artificial intelligence, and biological systems. His most recent works delve into quantum biocomputing and nanotechnology, as evidenced by his multi-volume publications with Springer Nature and CRC Press. He has also authored numerous peer-reviewed articles on topics such as cardiovascular disease detection using mobile AI, air quality forecasting, and toxic substance identification in fruits through deep learning.

Accolades and Recognition

Prof. Hasan Babu has received numerous prestigious awards recognizing his excellence in research and scholarly contributions. These include the Dhaka University Research Excellence Recognition, the UGC Gold Medal, and the Dr. M. O. Ghani Memorial Gold Medal from the Bangladesh Academy of Sciences. His biography has been featured in “Who's Who in the World, USA.” He has also received international fellowships such as the Japanese Government Scholarship, the DAAD Fellowship from Germany, and a Czechoslovakian Government Scholarship, marking his global academic influence.

Impact and Influence

Throughout his academic life, Prof. Hasan Babu has significantly influenced the fields of computer science, electronics, and artificial intelligence. His innovations in reversible logic and DNA computing have shaped research methodologies and applications in both academia and industry. He has been instrumental in advancing computational methods that address real-world problems, particularly in environmental monitoring, biomedical diagnostics, and agricultural automation. His role as a mentor to doctoral and master’s students further amplifies his impact on the next generation of scholars.

Legacy and Future Contributions

Prof. Hasan Babu’s extensive scholarly contributions, particularly in the emerging domains of quantum AI and biocomputing, position him as a thought leader in futuristic technologies. His upcoming publications promise to offer new paradigms in nanotechnology and molecular-level computing. As he continues to mentor new researchers and expand the boundaries of interdisciplinary science, his legacy will be defined by his relentless pursuit of innovation and his dedication to fostering a globally relevant research ecosystem.

List of Book Publications



Books Published in 2025:

1. Quantum AI Emerging Technologies: Driving Innovation and Shaping the Future of Nanotechnology, Volume I, Springer Nature, Singapore.

2. Quantum AI Emerging Technologies: Driving Innovation and Shaping the Future of Nanotechnology, Volume II, Springer Nature, Singapore.

3. Quantum Biocomputing in Quantum Biology, Volume I, Springer Nature, Singapore.

4. Quantum Biocomputing in Quantum Biology, Volume II, Springer Nature, Singapore.

Book Published in 2024:
5. DNA Logic Design: Computing with DNA, World Scientific Publishing Co Pte Ltd., Singapore.

Books Published in 2023:
6. Multiple-Valued Computing in Quantum Molecular Biology, Volume I, CRC Press, USA.
7. Multiple-Valued Computing in Quantum Molecular Biology, Volume II, CRC Press, USA.

Books Published in 2022:
8. VLSI Circuits and Embedded Systems, CRC Press, USA.
9. Control Engineering Theory and Applications (Co-authored with Md. Jahangir Alam, Guoqing Hu, and Huazhong Xu), CRC Press, USA.

Books Published in 2020:
10. Quantum Computing: A Pathway to Quantum Logic Design, 2nd Edition, IOP Publishers, Bristol, UK.
11. Reversible and DNA Computing, Wiley Publishers, UK.



Journal Publications


Analyzing infant cry to detect birth asphyxia using a hybrid CNN and feature extraction approach
Authors: Samrat Kumar Dey, Khandaker Mohammad Mohi Uddin, Arpita Howlader, Md Mahbubur Rahman, Hafiz Md Hasan Babu, Nitish Biswas, Umme Raihan Siddiqi, Badhan Mazumder
Journal: Neuroscience Informatics (Elsevier)
Year: 2025


Empowering early detection: A web-based machine learning approach for PCOS prediction
Authors: Md. Mahbubur Rahman, Ashikul Islam, Forhadul Islam, Mashruba Zaman, Md Rafiul Islam, Md Shahriar Alam Sakib, Hafiz Md Hasan Babu
Journal: Journal of Informatics in Medicine (Elsevier)
Year: 2024


Computer vision based deep learning approach for toxic and harmful substances detection in fruits
Authors: Abdus Sattar, Md. Asif Mahmud Ridoy, Aloke Kumar Saha, Hafiz Md. Hasan Babu, Mohammad Nurul Huda
Journal: Heliyon (Cell Press)
Year: 2024


A Comprehensive Approach to Detecting Chemical Adulteration in Fruits Using Computer Vision, Deep Learning, and Chemical Sensors
Authors: Abdus Sattar, Md. Asif Mahmud Ridoy, Aloke Kumar Saha, Hafiz Md. Hasan Babu, Mohammad Nurul Huda
Journal: Journal of Intelligent Systems with Applications (Elsevier)
Year: 2024


A Voice assistive mobile application tool to detect cardiovascular disease using machine learning approach
Authors: Khandaker Mohammad Mohi Uddin, Samrat Kumar Dey, Hafiz Md Hasan Babu
Journal: Biomedical Materials & Devices (Springer US)
Year: 2024


Conclusion

Prof. Hafiz Mohammad Hasan Babu embodies the spirit of academic excellence and innovation in computer science. With a career rich in scholarly output, international collaborations, and student mentorship, he has become a beacon of transformative research and a visionary in integrating quantum theory with computational systems. His work continues to influence the scientific community both in Bangladesh and globally, promising continued advancements in technology and applied sciences.

Biao Shi | Materials Science | Best Researcher Award

Dr. Biao Shi | Materials Science | Best Researcher Award

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences | China

Author Profile

Scopus

Orcid

Early Academic Pursuits

Dr. Biao Shi embarked on his academic journey at Chongqing University, where he demonstrated a rare interdisciplinary interest. He earned a Bachelor of Engineering in Material Physics, followed by a Bachelor of Management in Business Administration. His strong foundation in both technical and managerial domains reflects a holistic approach to science and innovation. Dr. Shi further elevated his academic credentials by earning a PhD in Materials Science from the Shanghai Institute of Ceramics, Chinese Academy of Sciences.

Professional Endeavors

Dr. Shi has cultivated a robust career centered around two-dimensional (2D) materials, a cutting-edge field in nanotechnology and materials science. His primary focus includes the synthesis and characterization of materials such as graphene, WS₂, and MoS₂, and their application in advanced devices. Currently, he is actively engaged in the design and fabrication of photodetectors and biosensors that leverage the unique properties of these 2D structures. His deep integration of materials science into real-world devices positions him at the forefront of applied nanotechnology.

Contributions and Research Focus

Dr. Shi's work spans numerous high-impact research publications, showcasing his expertise in biosensors, graphene-based field-effect transistors (GFETs), and photodetection technologies. He has co-authored pioneering studies such as fluorescence multiplexed miRNA biosensors for lung cancer diagnostics, DNA hybridization detection using WS₂ nanosheet-based FET biosensors, graphene liquid-gated transistors for label-free biosensing, and monolayer WS₂ crystal synthesis for scalable electronic applications. These contributions have advanced the precision, efficiency, and application scope of 2D materials in next-generation sensors and electronics.

Accolades and Recognition

While not explicitly listed, Dr. Shi’s consistent publication in prestigious journals like ACS Applied Nano Materials, Analytica Chimica Acta, and Nanomaterials reflects the high esteem in which his research is held by the global scientific community. His work is frequently cited and forms a core component of the rapidly growing field of nanomaterials and biosensor technologies.

Impact and Influence

Dr. Shi’s research is contributing to transformational technologies in medical diagnostics, particularly in early cancer detection through innovative biosensor design. His work with graphene and transition metal dichalcogenides (TMDs) is influencing how materials science is applied in biomedicine, environmental sensing, and optoelectronics. By enabling faster, more sensitive, and miniaturized sensors, he is helping shape the future of personalized healthcare and real-time diagnostics.

Legacy and Future Contributions

Dr. Shi's scientific legacy is anchored in his pioneering exploration of 2D materials for device applications. As research and development in nanotechnology accelerate, he is poised to make even greater strides in flexible electronics, wearable biosensors, and intelligent sensing platforms. His future work promises to further close the gap between material synthesis and functional device integration, paving the way for revolutionary applications in smart healthcare, environmental monitoring, and quantum devices.

Publications


A Sandwich-Type Impedimetric Immunosensor for the Detection of Tau-441 Biomarker

Authors: Khouloud Djebbi, Yang Xiang, Biao Shi, Lyes Douadji, Xiaohan Chen, Jin Liu, Chaker Tlili, Deqiang Wang
Journal: Bioengineering
Year: 2025


Graphene-based Field-Effect Transistor Biosensor for Prostate-Specific Antigen Detection

Authors: Xiangdong Kong, Yunjiao Wang, Deping Huang, Xin Li, Biao Shi, Daming Zhou, Rong Tian, Chaker Tlili, Deqiang Wang
Journal: Microchemical Journal
Year: 2024


Nanopore-Based Aptasensor for Label-Free and Sensitive Vanillin Determination in Food Samples

Authors: Mohamed Amin Elaguech, Mohamed Bahri, Khouloud Djebbi, Daming Zhou, Biao Shi, Liyuan Liang, Natalia Komarova, Alexander Kuznetsov, Chaker Tlili, Deqiang Wang
Journal: Food Chemistry
Year: 2022


Highly Sensitive Fluorescence Multiplexed miRNAs Biosensors for Accurate Clinically Diagnosis of Lung Cancer Disease Using LNA-Modified DNA Probe and DSN Enzyme

Authors: K. Djebbi, J. Xing, T. Weng, M. Bahri, M.A. Elaguech, C. Du, B. Shi, L. Hu, S. He, P. Liao, C. Tlili, D. Wang
Journal: Analytica Chimica Acta
Year: 2022


Tungsten Disulfide Nanosheet-Based Field-Effect Transistor Biosensor for DNA Hybridization Detection

 Authors: M. Bahri, B. Shi, M.A. Elaguech, K. Djebbi, D. Zhou, L. Liang, C. Tlili, D. Wang
 Journal: ACS Applied Nano Materials
Year: 2022