Wang Wei | Energy | Best Researcher Award

Assist. Prof. Dr. Wang Wei | Energy | Best Researcher Award

Beijing Institute of Technology | China

Author Profile

Scopus

Orcid

Early Academic Pursuits

Assist. Prof. Dr. Wang Wei began his academic journey with a strong foundation in thermal energy and power engineering, earning his undergraduate degree from the China University of Petroleum. His pursuit of advanced knowledge led him to the Beijing Institute of Technology, where he completed his doctoral studies in power engineering and engineering thermophysics. During his doctoral training, he broadened his academic horizon through a visiting research program at the National University of Singapore, which enriched his exposure to international research practices and advanced energy systems.

Professional Endeavors

Following his doctoral studies, Dr. Wang engaged in postdoctoral research at the Beijing Institute of Technology, where he deepened his expertise in thermoelectric conversion and energy systems. His commitment and scholarly contributions eventually led to his appointment as an Assistant Professor at the School of Mechanical Engineering, Beijing Institute of Technology. In this role, he has continued to mentor students and advance research in innovative energy technologies.

Contributions and Research Focus

Dr. Wang’s research contributions span across thermoelectric conversion, catalytic combustion, micro-combustion thermoelectric generators, and hybrid energy systems. He has designed and optimized high energy density thermoelectric power systems and explored combustion mechanisms within micro and mesoscopic porous media. His work also extends into wearable flexible thermoelectric systems and semiconductor refrigeration technologies, which bridge scientific innovation with practical applications in modern energy demands.

Accolades and Recognition

Dr. Wang’s scholarly impact is reflected in his robust publication record, with more than forty peer-reviewed papers, including first and corresponding author contributions in leading Q1 journals. His research has been recognized with notable awards such as the Gold Award in the International Track of the China International “Internet+” Innovation and Entrepreneurship Competition and the Gongxin Entrepreneurship Scholarship. He also earned recognition through the High-level Doctoral Dissertation Seedling Fund at Beijing Institute of Technology.

Impact and Influence

Through his inventive research, Dr. Wang has secured multiple patents that demonstrate his ability to transform theoretical concepts into tangible technologies. His inventions, ranging from flexible thermoelectric devices to advanced energy generation systems, highlight his capacity for problem-solving in applied science. As a reviewer for prestigious international journals, he also contributes to the advancement of the broader scientific community by guiding the quality and integrity of global research.

Legacy and Future Contributions

Looking ahead, Dr. Wang’s work is poised to have lasting significance in the field of sustainable and smart energy systems. His ongoing projects on micro thermoelectric power systems for intelligent unmanned platforms and flexible micro-energy technologies showcase his forward-thinking approach to energy challenges. By integrating advanced thermoelectric principles with practical innovations, his contributions are likely to shape the future of energy harvesting and next-generation power systems.

Publications


  • Article: A self-powered wireless temperature sensing system using flexible thermoelectric generators under simulated thermal condition
    Authors: Hejia Wang, Aijia Niu, Dessalegn Abera Waktole, Boru Jia, Zhengxing Zuo, Wei Wang
    Journal: Measurement
    Year: 2025


  • Article: Parameter interaction analysis and comprehensive performance optimization of a thermoelectric generator system integrating a wide temperature range of thermoelectric modules
    Authors: Zhu X., Zuo Z., Wang W.* et al.
    Journal: Energy Conversion and Management
    Year: 2025


  • Article: Effects of dual intake channels on energy efficiency and emissions of the uniflow scavenging opposed-piston engine
    Authors: Liang Y., Wang W., Zuo Z., Wang W.*
    Journal: Scientific Reports
    Year: 2025


  • Article: Performance comparison and optimization of thermoelectric generator systems with/without stepped-configuration
    Authors: Xingzhuang Zhu, Zhengxing Zuo, Wei Wang, Boru Jia, Ruiheng Liu, Qian Yin, Min Zhang
    Journal: Energy
    Year: 2025


  • Article: Impact of relative positioning of heat source and thermoelectric generator on performance of phase change material - thermoelectric system
    Authors: Yulong Zhao, Meng Tian, Fengyu Wu, Wei Wang, Haiqiao Wei, Shixue Wang, Minghui Ge
    Journal: Journal of Energy Storage
    Year: 2025


Conclusion

Assist. Prof. Dr. Wang Wei stands as an influential scholar whose academic pursuits, professional endeavors, and research contributions have established him as a leader in thermoelectric and energy system innovation. His patents, publications, and accolades reflect not only his dedication to scientific excellence but also his vision for creating impactful solutions in the energy sector. As his career advances, Dr. Wang continues to build a legacy that bridges academic rigor with societal benefit, ensuring his role as a key contributor to the global pursuit of sustainable energy technologies.

Ikram Moulay | Chemical Engineering | Editorial Board Member

Ms. Ikram Moulay | Chemical Engineering | Editorial Board Member

Korea Advanced Institute of Science & Technology | South Korea

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Ms. Ikram Moulay began her academic journey with a deep commitment to chemical and environmental engineering. From her undergraduate studies in process engineering to her master’s research in chemical engineering, she consistently demonstrated exceptional performance, graduating with distinction. Her academic foundation laid the groundwork for an intensive exploration of environmental remediation, adsorption techniques, and the development of sustainable engineering solutions. This early phase not only shaped her technical expertise but also instilled a strong research-driven mindset oriented toward solving pressing global challenges.

Professional Endeavors

Her professional journey reflects a progressive engagement with leading institutions and industries across different countries. As a research assistant at Abdelhamid Ibn Badis University, she gained expertise in environmental remediation and material valorization. Later, she joined Yonsei University, where she advanced her work in carbon capture, utilization, and storage technologies. At KAIST, she expanded her research into simultaneous NOx and CO2 capture, modeling pilot-scale systems, and exploring industrial applications. Alongside academic roles, her internship at SONATRACH enhanced her industrial exposure, providing practical knowledge of large-scale process engineering operations and technologies.

Contributions and Research Focus

Ms. Moulay’s research is centered on energy, environment, and sustainability, with a special emphasis on carbon capture and utilization strategies. She has worked extensively on designing novel sorbents from industrial waste, creating pathways for efficient CO2 absorption, and transforming emissions into high-value products such as fertilizers and carbonates. Her contributions extend to crystallization kinetics, process modeling, and techno-economic assessments of pilot plants. She has also published impactful papers on sustainable material synthesis and CCUS technologies in leading journals, bridging theoretical research with real-world applications.

Accolades and Recognition

Her outstanding academic and research contributions have been recognized with numerous scholarships and awards. She has received multiple global scholarships for her excellent academic performance and special recognition for her presentations at international conferences on greenhouse gas innovation projects. Prestigious scholarships from environmental foundations further highlight her dedication to advancing sustainable technologies. These recognitions reflect both her academic excellence and her growing influence as a young researcher in energy and environmental engineering.

Impact and Influence

Ms. Moulay’s work has had significant influence on both academic and industrial domains. By developing sustainable CO2 capture technologies and valorizing industrial residues, she contributes directly to global efforts in climate change mitigation. Her innovative methods for producing high-purity calcium carbonate and other value-added products offer practical solutions for reducing emissions while supporting circular economy principles. As a mentor and teaching assistant, she has also influenced students and young researchers, sharing her expertise in laboratory practices and fostering a culture of sustainability-focused engineering research.

Legacy and Future Contributions

Her legacy lies in her ability to bridge science, technology, and sustainability in ways that address some of the world’s most pressing environmental challenges. With ongoing doctoral research and international collaborations, she is set to contribute further to the advancement of carbon capture, sustainable material design, and industrial-scale environmental technologies. Her future endeavors are expected to focus on expanding CCUS systems, developing eco-friendly industrial processes, and mentoring the next generation of engineers committed to building a sustainable future.

Publications


Article: Sustainable Approaches to NOx Emissions: Capture and Utilization Technologies
Authors: Ikram Moulay; Kyumin Jang
Journal: Next Energy
Year: 2025


Article: Experimental and Integrated Computational Study on CCUS Technology Utilizing Desalinated Brine
Authors: Jinwon Park; Won Yong Choi; Kyumin Jang; Sungsoo Lee; Eunsil Kim; Ikram Moulay; Jiwon Myung; Seojin Oh; Yunsung Yoo; Dongwoo Kang et al.
Journal: Preprint
Year: 2024


Article: Strong Acid-Mediated Ca2+ Extraction–CO2 Mineralization Process for CO2 Absorption and Nano-Sized CaCO3 Production from Cement Kiln Dust: Simultaneous Treatment of CO2 and Alkaline Wastewater
Authors: Kyumin Jang; Won Yong Choi; Ikram Moulay; Dongwook Lee; Jinwon Park
Journal: Journal of Environmental Chemical Engineering
Year: 2023


Article: Synthesis of Nano-Sized Calcium Carbonates Employing Molecular Effect on CO2 Conversion via Biodegradable Chelating-System
Authors: Moulay, Ikram; Park, Jinwon; Yoo, Yunsung
Journal: Chemical Engineering Journal
Year: 2023


Conclusion

Ms. Ikram Moulay stands as a promising researcher whose academic brilliance, professional achievements, and impactful contributions in energy and environmental engineering position her as a leader in sustainable technologies. Through her pioneering research, recognized excellence, and dedication to both innovation and teaching, she embodies the qualities of a researcher whose work transcends academia to make a meaningful impact on society and the environment.

Dongqi Wang | Energy | Best Researcher Award

Mrs. Dongqi Wang | Energy | Best Researcher Award

Northeast Petroleum University | China

Author Profile

Scopus

Orcid

Early Academic Pursuits

Mrs. Dongqi Wang embarked on her academic journey with a deep-rooted passion for petroleum and natural gas engineering. Born in  China, she pursued her higher education at Northeast Petroleum University, where she later earned a Ph.D. in Petroleum and Natural Gas Engineering . Her doctoral work laid the foundation for her expertise in geological modeling, enhanced oil recovery (EOR), and low-permeability reservoir development. Her early academic years were marked by an exceptional grasp of engineering fundamentals and a growing interest in sustainable energy technologies.

Professional Endeavors

Currently serving as a college teacher and associate professor at Northeast Petroleum University, Mrs. Wang plays a vital role in academic and applied research. She actively guides students and researchers in the areas of oil and gas field development, simulation technology, and enhanced recovery methods. Her professional work is closely aligned with both academia and industry, demonstrating a rare balance between theoretical innovation and practical implementation in the field of energy and sustainability.

Contributions and Research Focus

Mrs. Wang's research contributions center around numerical simulationgeological modeling, and enhanced oil recovery (EOR) for low-permeability oil fields. Her innovative developments include a nonlinear seepage equation and a classification method for ultra-low permeability reservoirs. She has also proposed advanced mechanisms for microemulsion flooding and established a liquid phase behavior model based on the Hand model. Her work has significantly advanced understanding of residual oil utilization, combining both micro and macro perspectives. With 35 journal publications (including SCI and EI-indexed papers), 8 patents, and 2 academic books, her research footprint is both deep and diverse.

Accolades and Recognition

With 45 completed or ongoing research projects and over 274 citations, Mrs. Wang has firmly established herself as a rising expert in petroleum engineering. Her recognition extends to her role as a regular member of the Chinese Chemical Society, underscoring her commitment to collaborative science. Her published works and intellectual properties highlight her as a leading innovator in oil recovery technologies and reservoir simulation techniques.

Impact and Influence

Through her rigorous research and academic mentoring, Mrs. Wang has made a substantial impact on China’s oil and gas engineering community. Her models and methods for low-permeability reservoir development have been utilized in practical scenarios, bridging the gap between academic theory and field implementation. She has also influenced a new generation of engineers through education, project supervision, and academic collaboration.

Legacy and Future Contributions

Looking ahead, Mrs. Wang aims to deepen her exploration of EOR/IOR technologies and sustainable oil recovery strategies. Her future contributions are expected to focus on energy efficiency, cleaner extraction processes, and cross-disciplinary innovation in petroleum science. Her legacy will likely be defined by her pioneering role in transforming low-permeability reservoir engineering, blending theoretical brilliance with sustainable industry impact.

Publications


Fractal Dimension and Classification Evaluation of Microfractured Tight Reservoirs in Yongjin Oilfield

 JournalProcesses
 Year: 2025
 Authors: Chunguang Li, Dongqi Wang, Daiyin Yin, Yang Sun


Causes and Evolution of High Injection–Production Ratios in Low-Permeability Reservoirs: The Role of Water Absorption in Barrier and Intercalated Layers

 JournalProcesses (MDPI)
 Year: 2024
 Authors: Zheng Fang, Mian Chen, Daiyin Yin, Dongqi Wang, Kai Liu, Yuqing Yang, Konghang Yang


Influencing Factors and Microscopic Formation Mechanism of Phase Transitions of Microemulsion System

 JournalJournal of Petroleum Exploration and Production Technology
 Year: 2022
 Authors: Dongqi Wang, Yin Daiyin, Wang Junda, Zhou Yazhou, Zhang Chengli


Physicochemical Properties and Its Variation Law of Microemulsion Phase When Microemulsion Flooding

 JournalE3S Web of Conferences
 Year: 2021
 Authors: Dongqi Wang, Daiyin Yin, Junda Wang


Pore Structure Characteristics of Ultra-Low Permeability Reservoirs

 JournalNatural Resources Research
 Year: 2020
 Authors: Daiyin Yin, Dongqi Wang, Yazhou Zhou, Chengli Zhang


Hyunchul Ju | Engineering | Best Researcher Award

Prof. Dr. Hyunchul Ju | Engineering | Best Researcher Award

Inha University | South Korea

Author Profile

Scopus

Orcid

Google Scholar

🌱 Early Academic Pursuits

Prof. Dr. Hyunchul Ju embarked on his academic journey in Mechanical Engineering at Inha University in South Korea, earning his B.S. in 1999 . His quest for advanced knowledge took him to the United States, where he completed his M.S. at the University of Nevada, Reno in 2001, and later achieved his Ph.D. at The Pennsylvania State University in 2006. His early research laid the foundation for a lifelong dedication to innovation in fuel cells and hydrogen energy systems .

🧑‍🏫 Professional Endeavors

Prof. Ju’s academic career spans multiple prestigious institutions. After a post-doctoral stint at Penn State, he held faculty positions at Chungju National University and later joined Inha University, where he rose to the rank of Professor in 2018. His roles have included Associate Dean of Engineering and Director of key research centers focused on carbon neutrality and hydrogen-based mechanical systems. His international experience includes time as a visiting scholar at LBNL (USA), adding global dimension to his scientific leadership.

🧪 Contributions and Research Focus

Prof. Ju is a world-renowned authority on fuel cells, electrolysis, hydrogen storage, and battery systems. He has pioneered the modeling and optimization of electrochemical systems and developed cutting-edge technologies for lightweight fuel cell components, MEAs, and carbon composites. His work integrates machine learning, CFD, and FEM techniques to enhance performance and durability. He has secured major research funding from institutions like Hyundai and the National Research Foundation of Korea, proving his leadership in sustainable energy technologies.

🏆 Accolades and Recognition

Prof. Ju has received over 20 prestigious awards, including multiple Best Paper and Best Presentation Awards from respected Korean and international societies. He has been honored for his outstanding research contributions by Inha University, and received the Most Cited Paper Award from International Journal of Heat and Mass Transfer. His dedication and excellence have earned him recognition as a thought leader in energy research.

🌍 Impact and Influence

Beyond academia, Prof. Ju serves in key editorial and leadership roles: Editor-in-Chief of KHNES, Associate Editor at ASME JEECS, and Vice President of KSFM and KSME. He has mentored over 50 graduate students, many of whom now work at top-tier organizations such as Samsung, LG, Hyundai, and SK Innovation. His influence is seen in both academic research and industrial innovation, especially in Korea’s clean energy sector.

🔮 Legacy and Future Contributions

Prof. Hyunchul Ju’s legacy is marked by his pioneering role in hydrogen energy and electrochemical systems development. He led the world’s first DMFC-powered UAV demonstration, introduced novel cold-start technologies now used globally, and continues to develop high-efficiency systems for next-generation fuel cells. With multiple patents and a focus on carbon-neutral technologies, he is set to shape the future of sustainable mechanical systems for years to come.

Publications


📄Innovative flow field design strategies for performance optimization in polymer electrolyte membrane fuel cells

  • Authors: Not specified

  • Journal: Applied Energy

  • Year: 2025


📄Reliability-based design optimization methodology for enhancing performance and efficiency in catalyst manufacturing for polymer electrolyte membrane fuel cells

  • Authors: Not specified

  • Journal: Energy Conversion and Management

  • Year: 2024


📄Cathode-supported SOFCs enabling redox cycling and coking recovery in hydrocarbon fuel utilization

  • Authors: Not specified

  • Journal: Chemical Engineering Journal

  • Year: 2024


📄Ultrahigh Electrode Performance of Low-Loaded Iridium Jagged Nanotubes for Water Electrolysis Applications

  • Authors: Not specified

  • Journal: Advanced Energy Materials

  • Year: 2024


 

Xueling Li | Energy | Best Researcher Award

Assist. Prof. Dr. Xueling Li | Energy | Best Researcher Award

Zhengzhou University of Light Industry | China

Author Profile

Scopus

Orcid

🌱 Early Academic Pursuits

Assist. Prof. Dr. Xueling Li began her academic journey with a Bachelor of Engineering in Energy and Power Engineering (Refrigeration) from Henan University of Science and Technology in 2016. Her early academic interests revolved around thermodynamics and energy systems, paving the way for her specialization in energy-efficient technologies. She pursued her Master's in Refrigeration and Cryogenic Engineering at the School of Energy and Power Engineering, HUST, where she deepened her understanding of advanced cooling systems. Her academic excellence and dedication culminated in a Ph.D. in Mechanical Engineering from the prestigious School of Aerospace Engineering, Huazhong University of Science and Technology, completed in 2022.

🛠️ Professional Endeavors

Dr. Li is currently serving as an Assistant Professor, where she continues to innovate and lead in the field of energy systems and solar thermal technologies. Her role in academia has allowed her to contribute both as a researcher and a mentor, pushing the boundaries of renewable energy applications. She has collaborated on multiple interdisciplinary projects, contributing valuable insights into solar energy systems and nanofluid-based technologies.

🔬 Contributions and Research Focus

Dr. Li’s research is at the forefront of sustainable energy solutions. Her primary interests include high-transparency SiO₂ aerogels, solar thermal conversion, and nanofluid-based solar collectors. She has made substantial contributions to understanding the thermal dynamics and optical performance of advanced materials in solar energy systems. Her work has practical implications for both terrestrial and extraterrestrial applications, such as energy systems for lunar bases using lunar regolith heat storage.

🏆 Accolades and Recognition

Dr. Li has published in several high-impact journals with impact factors ranging from 9.0 to 10.1, a testament to the quality and relevance of her work. Her paper in Applied Energy on linear cavity receivers and another in Energy Conversion and Management on MXene nanofluids have garnered significant academic attention. Her innovative approach to enhancing solar thermal systems has made her a notable figure in the energy research community.

🌍 Impact and Influence

Through her advanced simulations and experimental studies, Dr. Li’s work contributes to the global pursuit of clean and efficient energy. Her findings influence how solar collectors are designed and optimized, directly affecting the performance of sustainable power generation systems. Moreover, her contribution to high-transparency aerogels is influencing the development of materials for next-generation solar thermal technologies.

🌟 Legacy and Future Contributions

Dr. Xueling Li stands as a role model for young researchers in the field of mechanical and energy engineering. Her trajectory showcases how dedication, interdisciplinary collaboration, and innovation can converge to solve real-world problems. In the future, she is expected to continue shaping the evolution of solar energy technologies and sustainable thermal systems—making significant strides toward a greener planet and energy-independent space missions.

Publications


  • 📄 Investigation on the optical, thermal, and electrical performance of photovoltaic-aerogel glazing system under different weather conditions
    Authors: Xueling Li, et al.
    Journal: Energy
    Year: 2025


  • 📄 Performance analysis of a dish solar thermal power system with lunar regolith heat storage for continuous energy supply of lunar base
    Authors: Xueling Li, Renfu Li, Lin Hu, et al.
    Journal: Energy
    Year: 2023


  • 📄 Preparation and performance study of highly transparent SiO₂ aerogel for solar high-temperature thermal utilization
    Authors: Xueling Li, Yang Liu, Liyun Yan, et al.
    Journal: Renewable Energy
    Year: 2025


  • 📄 Numerical simulation of a cavity receiver enhanced with transparent aerogel for parabolic dish solar power generation
    Authors: Xueling Li, Renfu Li, Huawei Chang, et al.
    Journal: Energy
    Year: 2022


  • 📄 Numerical analysis of photothermal conversion performance of MXene nanofluid in direct absorption solar collectors
    Authors: Xueling Li, Huawei Chang, Lijian Zeng, et al.
    Journal: Energy Conversion and Management
    Year: 2020


  • 📄 Thermal performance analysis of a novel linear cavity receiver for parabolic trough solar collectors
    Authors: Xueling Li, Huawei Chang, Chen Duan, et al.
    Journal: Applied Energy
    Year: 2019


 

Tazebew Dires Kassie | Engineering | Editorial Board Member

Mr. Tazebew Dires Kassie | Engineering | Editorial Board Member

Debre Markos University | Ethiopia

Author profile

Scopus

Orcid

🌱 Early Academic Pursuits

Mr. Tazebew Dires Kassie's journey into the realm of mechanical engineering began at Debre Markos University, where he earned his Bachelor’s degree in Mechanical Engineering in 2016 with an impressive GPA of 3.8/4.0. Fueling his passion for sustainability and innovation, he pursued a Master’s in Sustainable Energy Engineering from Bahir Dar University, graduating in 2021 with a perfect CGPA of 4.0/4.0. His thirst for continuous learning has since led him to expand his expertise through multiple Nano Degrees in Artificial Intelligence, Data Science, Android Development, and Programming Fundamentals from Udacity Online, and a Master Class in Online Teaching from Arizona State University.

🧑‍🏫 Professional Endeavors

Mr. Tazebew has been a dedicated academic and engineering professional since 2016, serving as a Lecturer at Debre Markos University. His leadership skills were further recognized when he was appointed Head of the Mechanical Engineering Department in 2024, where he now oversees academic programs, faculty development, research innovation, and strategic planning. Beyond academia, his early industry experience as a Maintenance Technician at Dashen Brewery S.C. in 2015 provided a strong foundation in preventive maintenance, machinery troubleshooting, and operational efficiency.

🔬 Contributions and Research Focus

Mr. Tazebew’s research contributions lie at the intersection of renewable energy systems, thermoelectric modules, and sustainable mechanical solutions. His notable studies include optimizing stove waste heat recovery using evaporative cooling, investigating CuO-water nanofluids in thermal systems, and analyzing performance parameters of direct evaporative coolers. His publications are featured in top-tier journals such as Springer – Energy Systems, Elsevier – Journal of Thermofluids, and Case Studies in Thermal Engineering. He has published five research papers, many of which are in press, and led two funded projects as a Principal Investigator.

🏅 Accolades and Recognition

Throughout his academic and professional career, Mr. Tazebew has received multiple awards that reflect his innovation and community dedication. He earned the Best BSc Thesis Award from Debre Markos University and received formal recognition for designing and manufacturing 6 wheelchairs with integrated toilet and shower services, and a shoeshine boy’s working shade, improving both accessibility and dignity. His outreach and project work have also earned him six certificates for community engagement, especially in aiding people with disabilities.

🌍 Impact and Influence

Mr. Tazebew’s work goes beyond the confines of classrooms and labs. His community-oriented engineering solutions highlight the practical application of sustainable technologies to address local needs. As a speaker and presenter at forums such as the Ethiopian Society of Mechanical Engineering and national research conferences, he continues to inspire peers and students alike with innovations in energy-efficient systems and design thinking. His teaching integrates real-world challenges with engineering fundamentals, empowering future professionals with critical problem-solving skills.

🔮 Legacy and Future Contributions

Mr. Tazebew Dires Kassie stands as a beacon of innovation and community-driven engineering in Ethiopia. With his growing expertise in AI, data science, and digital technologies, he is poised to bridge traditional mechanical engineering with cutting-edge interdisciplinary approaches. As he continues to lead his department and expand his research portfolio, his legacy is one of sustainable impact, academic excellence, and inclusive design. The future holds promise for more transformative projects and leadership in green energy solutions, smart technologies, and engineering education reform.

Publications


📄  Design and Fabrication of a Multi-Terrain Triphibian Quadcopter for Airborne, Terrestrial, and Aquatic Mobility
Author: Tazebew Dires Kassie
Journal: Journal of Intelligent & Robotic Systems
Year: 2025


📄  Experimental Investigation of Air Velocity, Water Flow Rate and Staging of Cooling Pad on the Performance of Direct Evaporative Coolers
Authors: Tazebew Dires Kassie, Yaregal Eneyew Bizuneh
Journal: International Journal of Air Conditioning and Refrigeration
Year: 2025


📄  Numerical Studies on Thermo-Hydraulic Performance of Solar Air Heater with Quarter-Circle Roughness Ribs
Authors: Tazebew Dires Kassie, Yaregal Eneyew, Amare Merfo
Journal: Results in Engineering
Year: 2025


📄  Numerical Investigation on Heat Transfer of CuO-Water Nano-Fluid in a Circular Pipe with Twisted Tape Inserts
Authors: Tazebew Dires Kassie, Yaregal Eneyew Bizuneh, Endalkew Berhie Gebresilassie, Atalay Enyew Bizuneh
Journal: International Journal of Thermofluids
Year: 2025


📄 Enhancing a Thermoelectric Power Generation System’s Efficiency from a Stove’s Waste Heat by Optimizing the Heat Sink Temperature Junction Using a Direct Evaporative Cooler
Authors: Bimrew Admasu, Tazebew Dires Kassie, Getu Alemayehu Melas, Hailemariam Mulugeta, S. Nagarajan
Journal: Energy Systems
Year: 2025


Ji-Won Jung | Materials Science | Best Researcher Award

Assist. Prof. Dr. Ji-Won Jung | Materials Science | Best Researcher Award

Konkuk University | South Korea

Author Profile

Scopus

Orcid

Google Scholar

🎓 Early Academic Pursuits

Dr. Ji-Won Jung began his stellar academic journey with a Bachelor's degree in Materials Science and Engineering from Yonsei University, achieving an outstanding GPA of 4.05/4.50. Driven by curiosity and a passion for advanced materials, he pursued an integrated M.S./Ph.D. program at KAIST, where he specialized in the development and electrochemical evaluation of solid-state electrode materials for various next-generation batteries including Li-, Na-, and K-ion systems. His early mentorship under Professors Kwang-Bum Kim and Il-Doo Kim laid the foundation for his future excellence in battery materials and nanotechnology.

🧑‍🔬 Professional Endeavors

Dr. Jung's career is marked by prestigious positions and collaborations across globally recognized institutions. After completing his doctoral studies, he served as a postdoctoral fellow at KAIST and later joined MIT in Professor Bilge Yildiz’s group, where he gained exposure to cutting-edge research environments. He returned to KAIST before joining the University of Ulsan as an Assistant Professor in 2021. In 2024, he was appointed as an Assistant Professor at Konkuk University, continuing his commitment to high-impact materials research and education.

🔬 Contributions and Research Focus

Dr. Jung is an authority in advanced battery materials, nanostructured electrodes, and thin-film technology. His work spans the synthesis and functionalization of nanofibers, solid electrolytes, and air batteries. He has pioneered research in:

  • Metal-air and solid-state battery systems 🔋

  • Unzipping carbon nanotubes for Li-O₂ batteries

  • 3D-printable and flexible battery platforms

  • Next-gen thin-film lithium batteries for wearable and on-chip applications

He has authored over 49 first/corresponding-author papers and contributed to numerous others in high-impact journals such as Chemical Engineering Journal, Advanced Fiber Materials, and Journal of Materials Chemistry A.

🏆 Accolades and Recognition

Dr. Jung's exceptional work has earned him numerous awards, such as:
🥇 The Best Award at Science Slam-D (2020)
🏅 “Young Engineer Award” from KSMPE (2021)
🏆 Best Business Idea Award by the Ministry of Science and ICT (2017)
🌟 Named a Rising Researcher and Promising Young Scientist by KAST (2017)

These accolades reflect not just innovation, but also his visionary approach to solving complex scientific challenges.

🌍 Impact and Influence

Dr. Jung’s research significantly impacts the global battery and materials science communities. His international collaborations, especially with Nobel laureate Prof. John B. Goodenough at UT Austin, illustrate his role in advancing both the academic and applied dimensions of electrochemical energy storage. With patents granted in Korea, the USA, and Europe, his innovations are poised to shape the future of sustainable energy and smart devices.

🔮 Legacy and Future Contributions

As an educator and researcher, Dr. Ji-Won Jung continues to inspire a new generation of engineers and scientists. His ongoing work at Konkuk University aims to push the boundaries of solid-state and wearable battery technologies. His unique blend of academic rigor, cross-disciplinary knowledge, and industry-oriented innovation ensures that his legacy will influence both the classroom and real-world applications for years to come.

Publication


📄 Manganese Alchemy: Atomic-scale Doping to Miniaturize Cobalt Oxide in Nanofiber Architecture for Ultra-fast Lithium-ion Batteries

  • Authors: Hyunmin Na, Ho-Jin Lee, Dae-Kwon Boo, Ilgyu Kim, Jeong-Ho Park, Jae-Woo Seo, Seon-Jin Choi, Jiyoung Lee, Tae Gwang Yun, Byungil Hwang, Jun Young Cheong, Ji-Won Jung

  • Journal: Chemical Engineering Journal

  • Year: 2025


📄 Investigation of Oxygen-related Defect Engineering in Nonstoichiometric Vanadium Oxides for Electrochromic Zinc-ion Batteries with Superior Electrochromic-electrochemical Performance

  • Authors: Yonghan Kim, Ilgyu Kim, Hye Kang Lee, Ji Won Jung, Tae-gwang Yun

  • Journal: Chemical Engineering Journal

  • Year: 2025


📄 Troubleshooting Carbon Nanotube Bundling Using Electrostatic Energy-Driven Dispersion for LiFePO₄ Bimodal Thick Electrode in Lithium-Ion Batteries

  • Authors: Ilgyu Kim, Jaehong Choi, Hangeol Jang, Pilgun Oh, Ji Won Jung

  • Journal: ACS Nano

  • Year: 2025


📄 Facile Encapsulation Strategy for Uniformly-dispersed Catalytic Nanoparticles/Carbon Nanofibers Toward Advanced Zn–Air Battery

  • Authors: Seong-woon Yoon, Dae Kwon Boo, Hyunmin Na, Ji Won Jung, Hyeong Min Jin

  • Journal: Journal of Materials Chemistry A

  • Year: 2025


📄 Etching-free Fabrication Method for Silver Nanowires-based SERS Sensors for Enhanced Molecule Detection

  • Authors: Yurim Han, Cristiano D’Andrea, Mirine Leem, Paolo Matteini, Byungil Hwang

  • Journal: Engineering Science and Technology, an International Journal

  • Year: 2024


 

Gabriel Roeder | Environmental Science | Best Researcher Award

Mr. Gabriel Roeder | Environmental Science | Best Researcher Award

Technical University of Munich| Germany

Author Profile

Orcid

👨‍🎓 Early Academic Pursuits

Gabriel José Roeder began his academic journey with a global perspective. After completing high school in Brazil and a senior year in Australia, he pursued Chemical and Process Engineering at the Karlsruhe Institute of Technology. He further specialized in Chemical Process Technology at Technical University of Munich (TUM), where he earned his Master’s degree with research on hydrogen transfer reactions. Currently, he is finalizing his Ph.D. (Dr.-Ing.) at TUM in the Chair of Energy Systems, focusing on nitrogen oxide emissions in biomass combustion—a topic crucial for sustainable energy.

🧪 Professional Endeavors

Gabriel has built a strong foundation in applied research and industrial engineering. He has worked as a Research Associate at TUM from 2021 to 2025, playing a central role in the OptiNOx project (FKZ 2219NR211). His responsibilities included designing and operating a 50 kW test rig, conducting emission measurements in power plants, and managing a €640,000 research budget. In July 2025, he joined Stadtwerke München Services GmbH as a Process and Plant Engineer for power plants, taking his academic expertise directly into the energy sector.

🔬 Contributions and Research Focus

Mr. Roeder’s research is dedicated to advancing sustainable combustion technologies. His key interests lie in:

  • 🔹 Nitrogen oxide reduction strategies

  • 🔹 Biomass combustion efficiency

  • 🔹 Hydrogen transfer reactions

  • 🔹 Carbon capture technologies

He has delivered presentations at major European conferences such as the European Biomass Conference, Kraftwerktechnisches Kolloquium, and the European Conference on Industrial Furnaces and Boilers. He also co-authored a publication in ACS Catalysis (2021) on hydrogenation mechanisms, contributing to green chemistry and catalytic process design.

🏅 Accolades and Recognition

Gabriel’s interdisciplinary expertise and academic rigor have been recognized through:

  • ➤Peer-reviewed journal publication in a high-impact journal (ACS Catalysis)

  • ➤Speaking engagements at international conferences in Austria, Italy, Portugal, and Germany

  • ➤His appointment to leading roles in both academic and industrial energy projects

🌍 Impact and Influence

Fluent in Portuguese, German, English, Spanish, and with a working knowledge of French, Gabriel’s multilingual and multicultural background enhances his collaboration skills across borders. His work contributes directly to the development of cleaner energy solutions, making him a valuable asset to both academic institutions and the power generation industry.

🔮 Legacy and Future Contributions

As he transitions from academia to the energy sector, Mr. Roeder is well-positioned to influence the next generation of low-emission power systems. His combination of experimental skill, financial oversight, and multilingual communication ability sets him apart as a future leader in sustainable energy engineering. With continued focus on innovation and collaborative development, his career promises impactful contributions to the decarbonization of industrial power generation.

Publications


📄  Measurements of NOx emissions from biomass combustion in small to large-scale power plants
Authors: Gabriel J. Roeder, Johannes Haimerl, Yusheng Chen, Matthias Gaderer, Sebastian Fendt, Hartmut Spliethoff
Journal: Fuel
Year: 2025


📄  Selective Heterogeneous Transfer Hydrogenation from Tertiary Amines to Alkynes
Authors: Gabriel J. Roeder, H. Ray Kelly, Guoju Yang, Thomas J. Bauer, Gary Haller, Victor Batista, Eszter Barath
Journal: ACS Catalysis
Year: 2021


Koat Jing Riek | Engineering | Editorial Board Member

Mr. Koat Jing Riek | Engineering | Editorial Board Member 

Gambella University | Ethiopia

Author Profile

Orcid

🎓 Early Academic Pursuits

Mr. Koat Jing Riek began his academic journey with a Bachelor of Science in Mechanical Engineering from Hawassa University in 2015. He further honed his expertise by earning an MSc in Sustainable Energy Engineering from Jimma Institute of Technology, where his thesis focused on a GIS-based site suitability analysis of non-wooden biomass solar-driven briquetting plants in Gambella Regional State. His academic path reflects a deep-rooted interest in sustainable energy solutions tailored to regional needs.

💼 Professional Endeavors

Mr. Koat has carved a multidimensional career in academia, consultancy, and public service. Since 2017, he has served as a Senior Lecturer at Gambella University, leading vital research and community development initiatives in the fields of energy and environment.

His professional journey includes key roles such as:

  • Technical Expert at Minilek Kefale Economic Development Consultancy, where he assessed biomass resources and facilitated cooperative development.

  • Consulting Engineer for the Development Response to Displacement Impacts Project (DRDIP), delivering training and designing energy solutions for remote communities.

  • Fuel Administrator at Ethio Telecom and Office Engineer-Energy at Gambella Water and Energy Bureau.

  • WASH Foreman with NRC, ensuring sanitation and hygiene in refugee camps.

🔬 Contributions and Research Focus

Mr. Koat’s research and fieldwork bridge the gap between academia and community needs. His focus lies in:

  • Biomass energy systems and briquetting plant development

  • Improved cook stoves and solar energy solutions

  • Community-based training on climate change and environmental protection

  • Technical specification generation for sustainable energy products

His published work in the journal "The Future of Energy, Power and Environment" showcases his scientific rigor and commitment to evidence-based solutions.

🏅 Accolades and Recognition

Mr. Koat’s dedication to sustainable development has been widely recognized:

🏆 Certificates of appreciation for training delivery on solar irrigation and improved cook stoves
🏆 Awarded by DRDIP and Minilek Kefale Consultancy for technical expertise in community empowerment
🏆 Certified in GIS mapping, electromechanical troubleshooting, and water safety planning by institutions like UNHCR and Jimma Institute of Technology

🌍 Impact and Influence

Mr. Koat’s efforts have directly improved the livelihoods of communities in Gambella Region, especially through:

🌱 Establishing cooperatives for clean energy products
🔋 Training local stakeholders on solar technologies and energy efficiency
🏘️ Empowering underserved populations to adopt renewable energy systems

He stands as a catalyst for sustainable development through practical engineering, grassroots engagement, and academic leadership.

🔮 Legacy and Future Contributions

Looking ahead, Mr. Koat aims to scale sustainable energy initiatives across Ethiopia and beyond. His long-term vision is to bridge academia, policy, and community innovation to combat climate change and energy poverty. Through ongoing mentorship, research, and consultancy, Mr. Koat Jing Riek is poised to inspire a new generation of engineers and changemakers committed to a greener, more resilient future.

Publications


📄 Multi-criteria decision analysis using GIS in assessing suitability for a solar-powered biomass briquetting plant in the Gambella region, Ethiopia

Authors: Koat Jing Riek, Wondwossen Bogale Eremed

Journal: Trees, Forests and People

Year: 2025


Qingsong Hu | Chemical Engineering | Best Researcher Award

Prof. Qingsong Hu | Chemical Engineering | Best Researcher Award

Hubei University of Arts and Science | China
Author profile

Scopus

Orcid

🎓 Early Academic Pursuits

Prof. Qingsong Hu began his academic journey with a Bachelor of Science in Pharmaceutical Engineering from the Hebei University of Science and Technology in 2010. His passion for chemical sciences led him to pursue a Ph.D. in Applied Chemistry at Zhejiang University of Technology (ZJUT), which he completed in 2016. This strong academic foundation laid the groundwork for his future research in advanced materials.

🧪 Professional Endeavors

Prof. Hu's career trajectory reflects a steady and impressive progression in academia. He began as a Postdoctoral Associate at Huazhong University of Science and Technology (HUST) from 2016 to 2020. In 2020, he joined Hubei University of Automotive Technology (HBUAS) as a Lecturer, swiftly rising to Associate Professor and eventually becoming a Professor in 2024. In the same year, he expanded his global reach, becoming a Visiting Professor at both Beijing Institute of Technology (BIT) and King Abdullah University of Science and Technology (KAUST) in Saudi Arabia.

🔬 Contributions and Research Focus

Prof. Hu is renowned for his groundbreaking research in photoelectric materials, especially in the domain of luminescent materials and perovskite nanocrystals. His work focuses on understanding the correlation between structural properties and photophysical behavior, unlocking innovations in:

✨ Lighting and display technology
📸 X-ray imaging
🔬 Biofluorescent labeling
📡 Photodetectors

Through structural analysis and dynamic photophysical studies, he has shed light on luminescence mechanisms that are now being translated into real-world applications.

🏆 Accolades and Recognition

Prof. Hu has garnered widespread recognition for his scholarly contributions. His papers have been published in top-tier journals such as Angewandte Chemie International Edition, Advanced Materials, Small, and Inorganic Chemistry. His name is frequently featured as a corresponding author, signifying his leadership in research initiatives. His work on X-ray scintillation and rare-earth-doped nanocrystals has been especially influential in advancing materials science for medical and industrial applications.

🌍 Impact and Influence

Prof. Hu’s research has not only expanded the boundaries of material sciences but also paved the way for safer, more efficient, and flexible X-ray imaging technologies. With over 18 high-impact publications in the last few years, his collaborative efforts across institutions and disciplines demonstrate his international influence and mentorship of emerging researchers in the field.

🌟 Legacy and Future Contributions

As a leader in luminescent material research, Prof. Hu is poised to shape the future of optoelectronics. His current roles at HBUAS and KAUST place him at the heart of interdisciplinary innovation. Looking ahead, his continued focus on environmentally friendly and high-performance materials will likely drive sustainable advancements in technology. With a career marked by rapid progression, innovation, and global collaboration, Prof. Qingsong Hu is set to leave a lasting legacy in the world of chemical and materials science.

Publications


📄 Rare Earth Double Perovskites for Underwater X-Ray Imaging Applications
Authors: Wang, Y., Wang, C., Men, L., Zhu, J., Hu, Q., Xiao, J., Mohammed, O. F.*
Journal: Inorganic Chemistry Frontiers
Year: 2025


📄 High-Fluoride-Induced Rapid Synthesis and Universal Modulation of Hexagonal Phase NaYF₄
Authors: Liu, S., Chen, Y., Wang, S., Zhou, Z., Zhang, R., Cheng, X., Liang, G., Hu, Q.
Journal: Optical Materials
Year: 2025


📄 Colloidal Synthesis of Hollow Double Perovskite Nanocrystals and Their Applications in X-ray Imaging
Authors: Wang, Y., Wang, C., Men, L., Hu, Q., Xiao, J.
Journal: Inorganic Chemistry
Year: 2024


📄 High-Stability Double Perovskite Scintillator for Flexible X-ray Imaging
Authors: Li, J., Hu, Q., Xiao, J., Yan, Z.
Journal: Journal of Colloid and Interface Science
Year: 2024


📄 Highly Effective Hybrid Copper(I) Iodide Cluster Emitter with Negative Thermal Quenched Phosphorescence for X-Ray Imaging
Authors: Hu, Q.†,, Zhang, C.†, Wu, X., Liang, G., Wang, L., Niu, X., Wang, Z., Si, W., Han, Y., Huang, R., Xiao, J., Sun, D.*
Journal: Angewandte Chemie International Edition
Year: 2023