Lixing Zheng | Energy | Best Researcher Award

Dr. Lixing Zheng | Energy | Best Researcher Award

PowerChina Chongqing Engineering Co., Ltd | China

Author Profile

Scopus

Early Academic Pursuits 🎓

Dr. Lixing Zheng’s academic journey began at the South China University of Technology, where he earned both his bachelor’s (2016) and master’s degrees (2019) in Mechanical and Electrical Engineering. His passion for energy research led him to pursue a PhD at the Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (2019–2023), where he focused on hydrogen energy production and low-carbon scenario analysis. His doctoral research laid the foundation for groundbreaking studies in hydrogen energy efficiency, carbon emissions, and energy transformation strategies.

Professional Endeavors 🏢

After completing his PhD, Dr. Zheng transitioned into postdoctoral research at PowerChina Chongqing Engineering Co., Ltd. in December 2023. His work continues to address critical energy challenges, focusing on hydrogen energy production, life cycle assessment (LCA) models, and low-carbon development pathways. He has also collaborated with prominent institutions and industry leaders, including the Chinese Academy of Engineering, Shanghai Electric Group, and Honda R&D China Co., Ltd., contributing to key projects in sustainable energy and industrial innovation.

Contributions and Research Focus 🔬

Dr. Zheng’s research spans multiple areas in sustainable energy, with a strong emphasis on hydrogen production technologies, carbon emissions reduction, and economic feasibility studies. His notable contributions include:

  • Hydrogen Energy Research: Development of LCA models to assess hydrogen production efficiency and carbon footprints.
  • Low-Carbon Transition Strategies: Medium and long-term scenario analysis for energy transformation in the Guangdong-Hong Kong-Macao Greater Bay Area.
  • Industrial Innovation: Evaluation of hydrogen metallurgy as an alternative for reducing emissions in the steel industry.
  • Waste Management and Renewable Energy: Modeling of wind power waste generation and end-of-life strategies in China.

His extensive work is reflected in multiple high-impact journal publications, including:

  • Journal of Engineering Thermophysics (Award-winning paper on hydrogen production routes)
  • International Journal of Hydrogen Energy
  • Progress in New Energy
  • Resources, Conservation and Recycling
  • Sustainability

Accolades and Recognition 🏆

Dr. Zheng’s contributions to hydrogen energy and sustainability research have earned him prestigious accolades:

  • 2024 Outstanding Paper Award from the Journal of Engineering Thermophysics.
  • 2024 Global Top Ten Award for the Commercialisation of Research Results by Engineers, highlighting his ability to bridge the gap between academic research and real-world applications.

Impact and Influence 🌍

Dr. Zheng’s work plays a crucial role in shaping China’s energy transition policies and advancing green technologies. His research on hydrogen energy supply scenarios and carbon neutrality goals has influenced decision-making in both government and industry sectors, paving the way for sustainable energy solutions.

Legacy and Future Contributions 🔮

With a growing portfolio of influential research and industry collaborations, Dr. Zheng is set to become a leading figure in hydrogen energy innovation. His future contributions will likely focus on enhancing hydrogen production efficiency and expanding its commercial applications, developing comprehensive LCA frameworks to support low-carbon policies, and strengthening partnerships with global energy stakeholders to accelerate clean energy adoption.

Publications


  • 📄 A Study of the Life Cycle Exergic Efficiency of Hydrogen Production Routes in China
    Authors: Lixing Zheng, Xian Jiang, Xue Zhang, Shuang Wang, Rui Wang, Lijun Hu, Kai Xie, Peng Wang
    Journal: Sustainability
    Year: 2025


  • 📄 Assessing Energy Consumption, Carbon Emissions, and Costs in Biomass-to-Gas Processes: A Life-Cycle Assessment Approach
    Authors: Ming Liu, Jian Zeng, Guohua Huang, Xiaohong Liu, Guoqiang He, Shun Yao, Ning Shang, Lixing Zheng, Peng Wang
    Journal: Sustainability
    Year: 2024


  • 📄 Medium and Long-Term Hydrogen Production Technology Routes and Hydrogen Energy Supply Scenarios in Guangdong Province
    Authors: Lixing Zheng, Daiqing Zhao, Wenjun Wang
    Journal: International Journal of Hydrogen Energy
    Year: 2023


  • 📄 Analysis of the Alternative Potential and Economic Benefits of Hydrogen Metallurgy Technology in the Iron and Steel Industry—A Case Study of Guangdong Province
    Authors: Lixing Zheng, Genglin Dong, Peng Wang, Daiqing Zhao
    Journal: Progress in New Energy
    Year: 2023


  • 📄 Research on Energy Efficiency, Carbon Emissions, and Economics of Hydrogen Production Routes in China Based on Life Cycle Assessment
    Authors: Lixing Zheng, Daiqing Zhao, Xiaoling Qi, et al.
    Journal: Journal of Engineering Thermophysics
    Year: 2022


 

Noorfidza Yub Harun | Chemical Engineering | Best Researcher Award

Dr. Noorfidza Yub Harun | Chemical Engineering | Best Researcher Award

Universiti Teknologi Petronas | Malaysia

Author Profile

Scopus

Google Scholar

Early Academic Pursuits 🎓

Dr. Noorfidza Yub Harun's academic journey is marked by a strong foundation in both chemical and mechanical engineering. She earned her PhD in Mechanical Engineering from the University of New Brunswick, where she also obtained a Diploma in University Teaching. Her earlier academic qualifications include an MSc in Forest Engineering, another MSc in Environmental Energy Engineering from the University of Sheffield, and a BEng in Chemical and Process Engineering from the National University of Malaysia. These diverse academic experiences have provided her with a broad and deep understanding of engineering principles, particularly in the fields of environmental and mechanical engineering.

Professional Endeavors 💼

As a Senior Lecturer at Universiti Teknologi PETRONAS, Dr. Noorfidza has made significant contributions to the field of chemical engineering through her teaching and research. Her professional endeavors include leading numerous research projects, such as the synthesis of mechanical characteristics and ash fusion temperature of krafts-based pellet fuel and the development of biochar-based adsorbents for heavy metals remediation. These projects not only highlight her expertise but also her commitment to advancing sustainable and environmentally friendly engineering solutions.

Contributions and Research Focus 🔬

Dr. Noorfidza's research primarily focuses on the intersection of environmental sustainability and engineering. Her work on ash fusion behavior, biochar development, and the incorporation of glycerol as a compatibilizer in biopolymer matrices are particularly noteworthy. These projects demonstrate her ability to address complex environmental challenges through innovative engineering solutions. Her research has significant implications for the fields of energy production, waste management, and environmental remediation, making her a key contributor to sustainable engineering practices.

Accolades and Recognition 🏅

Throughout her career, Dr. Noorfidza has been recognized for her contributions to academia and research. Her role as the principal investigator in several high-impact research projects is a testament to her leadership and expertise. Her work has garnered attention within the academic community, particularly for its focus on sustainable engineering solutions. While specific awards and accolades are not detailed here, her ongoing research projects and the respect she commands in her field suggest a scholar of high repute.

Impact and Influence 🌍

Dr. Noorfidza's impact extends beyond her immediate academic environment. Through her research, she has contributed to the development of sustainable engineering practices that have the potential to address global environmental challenges. Her work on biochar-based adsorbents and renewable energy sources like biomass and sludge-derived fuels has influenced both the academic community and industry practices. Additionally, her teaching has shaped the next generation of engineers, instilling in them the importance of environmental sustainability in engineering.

Legacy and Future Contributions 🌟

As Dr. Noorfidza continues her work at Universiti Teknologi PETRONAS, her legacy is likely to be one of innovation and dedication to sustainable engineering. Her ongoing research and teaching efforts ensure that she will continue to contribute significantly to the field. Her work not only addresses current environmental challenges but also lays the groundwork for future advancements in chemical and environmental engineering. Dr. Noorfidza's career thus far suggests that her future contributions will continue to impact the field positively, making her a worthy candidate for recognition as an outstanding scholar.

 

Publications  📚


📄 Title: Response Surface Methodology and Artificial Neural Network Modelling of Palm Oil Decanter Cake and Alum Sludge Co-Gasification for Syngas (CO+H2) Production
Authors: Kunmi Joshua Abioye, Noorfidza Yub Harun, Ushtar Arshad, Suriati Sufian, Mohammad Yusuf, Ahmad Hussaini Jagaba, Joshua O. Ighalo, Abdullah A. Al-Kahtani, Hesam Kamyab, Ashok Kumar, Chander Prakash, Jude A. Okolie, Hussameldin Ibrahim
Journal: International Journal of Hydrogen Energy
Year: 2024


📄 Title: Optimization of Operational Parameters Using Artificial Neural Network and Support Vector Machine for Bio-oil Extracted from Rice Husk
Authors: Ahmed, A., Yub Harun, N., Waqas, S., Arshad, U., Ghalib, S.A.
Journal: ACS Omega
Year: 2024


📄 Title: Optimization of Syngas Production from Co-Gasification of Palm Oil Decanter Cake and Alum Sludge: An RSM Approach with Char Characterization
Authors: Abioye, K.J., Harun, N.Y., Sufian, S., Chelliapan, S., Kang, K.
Journal: Environmental Research
Year: 2024


📄 Title: Energy-Efficient Single-Stage Membrane Rotating Biological Contactor for Wastewater Treatment
Authors: Waqas, S., Harun, N.Y., Lock, S.S.M., Alsaadi, A.S.
Journal: Bioresource Technology Reports
Year: 2024


📄 Title: Optimization of Operational Parameters Using RSM, ANN, and SVM in Membrane Integrated with Rotating Biological Contactor
Authors: Waqas, S., Harun, N.Y., Arshad, U., Nordin, N.A.H., Alsaadi, A.S.
Journal: Chemosphere
Year: 2024


 

Jaewon Rhee | Engineering | Best Researcher Award

Ms. Jaewon Rhee | Engineering | Best Researcher Award

Korea Advanced Institute of Science and Technology | South Korea

Author profile

Orcid

Early Academic Pursuits 📘

Ms. Jaewon Rhee embarked on her academic journey in the field of electrical engineering, earning her Bachelor's degree from Kyungpook National University, Daegu, Korea, in 2020. She then pursued her Master's degree in CCS Green Transportation Engineering (Electrical Engineering) from the Korea Advanced Institute of Science and Technology (KAIST) in Daejeon, Korea, where she completed her thesis on the "Reactive Shielding Method with Increasing Power Transfer Efficiency using Frequency Split Phenomena" under the guidance of Professor Seungyoung Ahn. Currently, she is working towards her Ph.D. at the Cho Chun Shik Graduate School of Mobility at KAIST, continuing her research in Daejeon, Korea.

Professional Endeavors 🚀

Throughout her academic career, Ms. Rhee has made significant contributions to the field of electrical engineering, focusing on wireless power transfer, electromagnetic compatibility, electromagnetic fields, and power electronics. She has been actively involved in research projects and has co-authored several papers in renowned international journals. Her work includes innovative methods to enhance power transfer efficiency and reduce electromagnetic interference in wireless power systems.

Contributions and Research Focus 🔬

Ms. Rhee's research interests are primarily centered around wireless power transfer, electromagnetic compatibility, electromagnetic fields, and power electronics. She has contributed to several key publications, including:

  1. "EMI Reduction Method for Wireless Power Transfer Systems with High Power Transfer Efficiency Using Frequency Split Phenomena" (IEEE Transactions on Electromagnetic Compatibility, 2022).
  2. "Minimizing Leakage Magnetic Field of Wireless Power Transfer Systems Using Phase Difference Control" (Energies, 2022).
  3. "Accurate Method for Extracting the Coupling Coefficient of Wireless Power Transfer System" (IEEE Transactions on Power Electronics, 2022).
  4. "Wireless Torque and Power Transfer Using Multiple Coils with LCC-S Topology for Implantable Medical Drug Pump" (Sensors, 2021).

Accolades and Recognition 🏅

Ms. Rhee has been recognized for her outstanding research contributions with the Best Research Award from the Cho Chun Shik Graduate School of Mobility at KAIST in 2022. Her work has been published in leading journals and presented at various international conferences, reflecting her commitment to advancing the field of electrical engineering.

Impact and Influence 🌟

Ms. Rhee's research has had a significant impact on the development of more efficient and reliable wireless power transfer systems. Her innovative methods for reducing electromagnetic interference and improving power transfer efficiency are paving the way for advancements in wireless technology, particularly in the fields of transportation and medical devices.

Legacy and Future Contributions Highlight 🔮

As Ms. Rhee continues her Ph.D. studies and research, her future contributions are expected to further enhance the efficiency and applicability of wireless power transfer systems. Her ongoing work promises to address critical challenges in electromagnetic compatibility and power electronics, contributing to the development of cutting-edge technologies that will shape the future of wireless power transfer and its applications across various industries.

Publications 📗


Selection of Ferrite Depending on Permeability and Weight to Enhance Power Transfer Efficiency in Low-Power Wireless Power Transfer Systems

  • Authors: Jaewon Rhee, Seongho Woo, Changmin Lee, Seungyoung Ahn
  • Journal: Energies
  • Year: 2024

A Method for Deembedding the Mounting Pad and Via-Hole Effect in a Test Fixture for Accurate Impedance Measurement of the Surface Mount Device Component

  • Authors: Sanguk Lee, Hyunwoong Kim, Jangyong Ahn, Jaewon Rhee, Jaeyong Cho, Hongseok Kim, Seungyoung Ahn
  • Journal: IEEE Transactions on Instrumentation and Measurement
  • Year: 2024

Methodology for Extracting Low-Frequency Input Impedance of Personal Computer During Operation Using Dual Current Probes Method

  • Authors: Jaewon Rhee, Hyunwoong Kim, Kwanguk Chu, Seungyoung Ahn
  • Journal: IEEE Transactions on Electromagnetic Compatibility
  • Year: 2024

A Study on Automotive Passive EMI Filter Modeling Method for Conducted Emission Prediction

  • Authors: Jaewon Rhee, Sanguk Lee, Jangyong Ahn, Hongseok Kim, Jiseong Kim, Seungyoung Ahn
  • Journal: The Journal of Korean Institute of Electromagnetic Engineering and Science
  • Year: 2024

Minimizing Leakage Magnetic Field of Wireless Power Transfer Systems Using Phase Difference Control

  • Authors: Seongho Woo, Yujun Shin, Changmin Lee, Jaewon Rhee, Jangyong Ahn, Jungick Moon, Seokhyeon Son, Sanguk Lee, Hongseok Kim, Seungyoung Ahn
  • Journal: Energies
  • Year: 2022

 

Reji Kumar Rajamony | Energy | Best Researcher Award

Dr. Reji Kumar Rajamony | Energy | Best Researcher Award

Universiti Tenaga Nasional | Malaysia

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 🎓

Dr. Reji Kumar Rajamony's academic journey began with a Diploma in Mechanical Engineering from DOTE, Tamil Nadu, India (June 1995 - May 1998). He then pursued a Bachelor's in Mechanical Engineering from Anna University, India (Sep 2005 - May 2009), followed by a Master's in Thermal Engineering from the same institution (June 2009 - May 2011). His academic path culminated with a Ph.D. in Advanced Materials from Universiti Malaysia Pahang, Malaysia (September 2019 - January 2023).

Professional Endeavors 💼

Dr. Rajamony has amassed significant experience across various roles, including Post-Doctoral Researcher at the Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Malaysia (May 2023 - Present); Adjunct Professor at Parul University, Gujarat, India (May 2024 - Present); Research Assistant at the Research Centre for Nano-Materials and Energy Technology (RCNMET), Sunway University, Malaysia (May 2022 - April 2023); Assistant Professor at Rajas Engineering College, India (September 2018 - August 2019); Lecturer at Bahir Dar University, Ethiopia (October 2012 - August 2018); Assistant Professor at CAPE Institute of Technology, India (June 2011 - September 2012); Lecturer at Surya Polytechnic College, India (September 2007 - August 2009); Instructor at Udaya Polytechnic College, India (July 2005 - August 2007); and Mechanical Supervisor at Ganesh Motor Works, India (March 2000 - February 2003) and Tamilnadu State Transport Corporation, India (March 1999 - February 2000)

Contributions and Research Focus 🔬

Dr. Rajamony's research spans advanced thermal energy storage materials, photovoltaic thermal systems, climate change, sustainability, and energy efficiency. His current projects include work on latent heat storage materials, nano-enhanced phase change materials, and PCM integrated PVT systems. His research aligns with the United Nations Sustainable Development Goals (SDGs) and involves sophisticated instrumentation like FESEM, FTIR, EDS, UV-Vis Spectrum, TGA, DSC, and thermal conductivity analyzers.

Accolades and Recognition 🏆

Dr. Rajamony has received multiple awards and recognitions, including the PhD-Best Thesis Award in the Engineering Category (2023) from Universiti Malaysia Pahang Al-Sultan Abdullah, Malaysia, and the Best Teacher Award from Bahir Dar Institute of Technology, Ethiopia (2013)

Impact and Influence 🌟 

With over 50 publications and a cumulative impact factor of 200+, Dr. Rajamony's work significantly contributes to the fields of energy storage and thermal systems. His research has garnered 1087 citations on Google Scholar, reflecting his influence in the scientific community. He also has extensive experience in teaching (12.6 years), research (5 years), and industry (4 years).

Legacy and Future Contributions Highlight 🌟

Dr. Rajamony's commitment to sustainable energy solutions and his expertise in advanced materials position him as a key contributor to achieving zero carbon footprints and greater energy efficiency. His ongoing research and professional endeavors continue to push the boundaries of energy technology, promising significant advancements toward a sustainable future.

 

Publications 📕

📝 Experimental investigation on the performance of binary carbon-based nano-enhanced inorganic phase change materials for thermal energy storage applications

    • Authors: Rajamony, R.K., Paw, J.K.S., Pasupuleti, J., Ahmed, O.A., Kadirgama, K.
    • Journal: Journal of Energy Storage
    • Year: 2024

📝 Enhancing Thermal Energy Storage: Investigating the Use of Graphene Nanoplatelets in Phase Change Materials for Sustainable Applications

    • Authors: Muppana, V.N., Fikri, M.A., Samykano, M., Wan Hamzah, W.A., Kadirgama, K.
    • Journal: Energy Technology
    • Year: 2024

📝 Progress in research and technological developments of phase change materials integrated photovoltaic thermal systems: The allied problems and their mitigation strategies

    • Authors: Rajamony, R.K., B., K., Lagari, I.A., Soudagar, M.E.M., Khan, T.M.Y.
    • Journal: Sustainable Materials and Technologies
    • Year: 2024

📝 Emerging technologies, opportunities and challenges for microgrid stability and control

    • Authors: Satapathy, A.S., Mohanty, S., Mohanty, A., Ali, M.M., Bashir, M.N.
    • Journal: Energy Reports
    • Year: 2024

📝 A class of promising fuel cell performance: International status on the application of nanofluids for thermal management systems

    • Authors: Sofiah, A.G.N., Pasupuleti, J., Samykano, M., Sulaiman, N.F., Che Ramli, Z.A.
    • Journal: Materials Today Sustainability
    • Year: 2024

Ajay Kumar Bansal | Energy | Best Researcher Award

Prof Dr. Ajay Kumar Bansal | Energy | Best Researcher Award

Central University of Haryana | India

Author Profile

Scopus

Orcid

Early Academic Pursuits

Dr. Ajay Kumar Bansal embarked on his academic journey with a strong foundation in the sciences and engineering. He completed his 12th grade in Physics, Chemistry, and Maths from the Rajasthan Board of Secondary Education, Ajmer, in 1996 with a percentage of 71%. Following this, he pursued a Bachelor of Engineering (B.E.) in Electrical Engineering from M.B.M. Engineering College, JNVU, Jodhpur, in 2000, achieving 68%. His commitment to further education led them to earn a Computer Diploma from CDAC, Pune, in 2002 with a commendable score of 83.8%. He continued his studies with a Master of Technology (M.Tech.) in Power Systems from Malaviya National Institute of Technology (MNIT), Jaipur, in 2007, graduating with a CGPA of 9.58. Dr. Ajay Kumar Bansal concluded his formal education with a Ph.D. in Non-conventional Energy from MNIT, Jaipur, in 2014. His thesis focused on an "Efficient Hybrid Energy System for Rural Applications," highlighting his dedication to advancing energy solutions.

Professional Endeavors

Dr. Ajay Kumar Bansal has built a distinguished career in academia and engineering. He began his professional journey as a Lecturer in Electrical Engineering at Poornima College of Engineering, Jaipur, in July 2000. Over the years, he advanced to various leadership roles, including Head of Department (HOD) and Assistant Professor at Poornima College. From June 2007 to December 2009, he continued as HOD and Lecturer at Poornima College. Subsequently, he held positions as Dean and Associate Professor at Poornima Institute of Engineering & Technology, Jaipur, from December 2009 to April 2012. His expertise and leadership were further demonstrated as Director & Professor at the same institution from May 2012 to August 2018. Currently, he serve as a Professor, Ex. Dean, and Ex. HOD at Central University of Haryana, Mahendergarh, since August 2018, where he continue to contribute to administration and teaching.

Contributions and Research Focus

Dr. Ajay Kumar Bansal is renowned for his contributions in Electrical Engineering, particularly in the fields of Energy and Renewable Energy. his research focuses on the performance analysis of smart grids, the integration of renewable energy sources, and the development of advanced energy systems. He have been awarded patents for innovative solutions, including:

  • Civil Engineering Water Pump with Grid Connected Intelligent Solar System for Water Management (Patent No. 419535)
  • Inverted Vertical E Plate Bank Protection System for River (Patent No. 468510)

Additionally, he have published research on topics such as:

  • Intelligent System to Utilize Internet of Things (IoT) to Monitor Crops (Patent No. 201811013750)
  • Online Predictive Maintenance of Electric Motors Using Internet of Things (Patent No. 202231040194)

Hiswork encompasses advanced models for smart grid performance, cybersecurity in energy systems, and renewable energy integration.

Accolades and Recognition

Dr. Ajay Kumar Bansal has received numerous awards and honors for his exceptional contributions to the field of engineering:

  • POSOCO Power System Award (PPSA) - 2015 for the best Ph.D. thesis at the national level
  • Glory of Education Excellence Award, 2015
  • Research Excellence Award, 2020
  • National Education Brilliance Award, 2023 for being a highly effective professor in Indian education
  • SERD Sustainability Award 2024 in Indonesia

These accolades underscore his significant impact on both the academic and professional communities.

Impact and Influence

Dr. Ajay Kumar Bansal has made a substantial impact in his field through groundbreaking research and innovative solutions. His patents and research have advanced the knowledge base in smart grids, renewable energy, and water management. By integrating modern technologies like IoT into his projects, he have contributed to more efficient and sustainable engineering practices. His leadership roles in academia have inspired and guided many students and professionals in the field.

Legacy and Future Contributions

Dr. Ajay Kumar Bansal’s legacy is defined by his dedication to advancing engineering practices and his commitment to education. his innovative patents and research continue to influence the field of Electrical Engineering and Energy Systems. Looking ahead, he aim to further explore advancements in smart grid technologies, renewable energy integration, and sustainable practices. His ongoing research and leadership will likely continue to drive progress and inspire future generations of engineers.

 

Publications

  • Article: Optimal configuration and sensitivity analysis of hybrid nanogrid for futuristic residential application using honey badger algorithm
    Authors: Bansal, A.K., Sangtani, V.S., Bhukya, M.N.
    Journal: Energy Conversion and Management
    Year: 2024

 

  • Article: Simulation of thermal comfort and energy demand in buildings of sub-Himalayan eastern India - Impact of climate change at mid (2050) and distant (2080) future
    Authors: Thapa, S., Rijal, H.B., Pasut, W., Bansal, A.K., Panda, G.K.
    Journal: Journal of Building Engineering
    Year: 2023

 

  • Article: GMPP Tracking of Solar PV system using Spotted Hyena and Quadratic Approximation based Hybrid Algorithm under Partially shaded conditions
    Authors: Kumar, P., Kumar, M., Bansal, A.K.
    Journal: IEEE Access
    Year: 2023

 

  • Article: Biogeography-based Optimization of Artificial Neural Network (BBO-ANN) for Solar Radiation Forecasting
    Authors: Bansal, A.K., Sangtani, V.S., Dadheech, P., Aneja, N., Yahya, U.
    Journal: Applied Artificial Intelligence
    Year: 2023

 

  • Review: Sizing and forecasting techniques in photovoltaic-wind based hybrid renewable energy system: A review
    Authors: Bansal, A.K.
    Journal: Journal of Cleaner Production
    Year: 2022

 

 

Akash Sharma | Engineering | Best Researcher Award

Mr. Akash Sharma | Engineering | Best Researcher Award

Malaviya National Institute of Technology | India

Author Profile

Scopus

Early Academic Pursuits 🎓

Mr. Akash Sharma’s academic journey began with a solid foundation in Electrical Engineering. He earned his Bachelor of Technology (B-Tech) in Electrical Engineering from Arya College of Engineering & IT, RTU Kota in 2016, achieving a commendable 68.5%. He further pursued a Master of Technology (M-Tech) in Power Systems from Malaviya National Institute of Technology (MNIT), Jaipur in 2021, with a CGPA of 7.72. His quest for knowledge continued as he completed his PhD in Power Systems at MNIT, Jaipur in 2022, with a CGPA of 7.6. His doctoral research focused on the performance analysis of smart grids, utilizing data-driven methods and machine learning.

Professional Endeavors 💼

Mr. Sharma's professional experience includes diverse roles. He served as a guest faculty at the College of Dairy Science and Technology, Jobner, from 2021 to 2022, where he contributed to the academic environment. Prior to this, he worked as a Graduate Engineer Trainee (GET) at IRB Infrastructure Ltd., handling electrical aspects of various plants and overseeing staff welfare. Additionally, Mr. Sharma gained valuable experience as a Public Relations Officer (PRO) with Indian Business Pages in 2016.

Contributions and Research Focus 🔍

Mr. Sharma's research is centered on the performance analysis of smart grids, integrating deep learning and machine learning techniques. His PhD work emphasizes cybersecurity in energy consumption, aiming to develop advanced models for detecting and mitigating cyber-attacks on smart grid infrastructures. His work also explores the seamless integration of renewable energy sources and optimization of smart grid performance. He has published a notable research paper on voltage profile enhancement using FACTS devices and has worked on solar tracking systems.

Accolades and Recognition 🏅

While Mr. Sharma has not yet received major awards, his active participation in co-curricular activities and his impactful research reflect his dedication. His work on smart grids and renewable energy has been well-received in academic circles, demonstrating his commitment to advancing the field of electrical engineering.

Impact and Influence 🌟

Mr. Sharma's contributions to smart grid technology and renewable energy integration are shaping the future of power systems. His work in enhancing grid performance and addressing cybersecurity concerns is crucial in the evolving landscape of energy management. His involvement in both academic and professional settings highlights his influence on the next generation of engineers and researchers.

Legacy and Future Contributions 🚀

Looking ahead, Mr. Sharma's ongoing research and professional activities will continue to impact the field of electrical engineering. His focus on smart grids and renewable energy positions him to contribute significantly to advancements in these areas. As he builds on his experiences and research, he is poised to leave a lasting legacy in the realm of power systems and sustainable energy solutions.

 

Publications

  • Title: Anomaly detection in smart grid using optimized extreme gradient boosting with SCADA system
  • Authors: Sharma, A., Tiwari, R.
  • Journal: Electric Power Systems Research
  • Year: 2024

 

  • Title: Load Shedding Technique for Maintaining Voltage Stability
  • Authors: Sharma, P.K., Sharma, A., Tiwari, R.
  • Journal: Lecture Notes in Electrical Engineering
  • Year: 2024

 

 

 

 

Soundharrajan Vaiyapuri | Energy | Best Researcher Award

Dr. Soundharrajan Vaiyapuri | Energy | Best Researcher Award

Chungnam Nationan University | South Korea

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Soundharrajan Vaiyapuri's academic journey began with a strong foundation in Chemical and Electrochemical Engineering. He completed his Bachelor of Technology at the Central Electrochemical Research Institute (CECRI) in Karaikudi, Tamil Nadu, India. His passion for energy storage technology led him to pursue a combined master's and doctoral course at Chonnam National University, South Korea, where he earned his Ph.D. in Materials Science and Engineering. His thesis, titled "Rapid fabrication and evaluation of high-energy cathodes for Sodium-Ion Battery," laid the groundwork for his future research endeavors in the field of energy storage.

Professional Endeavors

Dr. Vaiyapuri's professional career is marked by significant contributions to the field of material chemistry and energy storage. He began his career as a Processing Engineer at Micropack Pvt Ltd in Bangalore, India, where he honed his skills in process control and development. His journey in academia and research took a major leap when he joined Chonnam National University as a Postdoctoral Researcher, leading the Engineering Research Center grant, the biggest research grant in South Korea. He later joined MEET - Münster Electrochemical Energy Technology in Germany, working on high-energy-density and safe zero-Co Li-Ion batteries using non-critical raw materials and green processes. Currently, he is a Postdoctoral Researcher at Chungnam National University, South Korea, leading a team in the BK-21 research grant for future batteries.

Contributions and Research Focus

Dr. Vaiyapuri's research focuses on the design and implementation of rechargeable lithium-ion batteries, sodium-ion batteries, and aqueous-ion batteries. His expertise encompasses various aspects of battery fabrication and characterization, including material synthesis, electrochemistry, and advanced battery analysis. He has developed high-energy inorganic cathode materials for sodium-ion batteries and aqueous-ion batteries, contributing significantly to the advancement of energy storage technology. His innovative approaches include the development of a new synthesis method for high-energy polyanion cathodes for sodium-ion batteries and the establishment of patents for novel cathode materials.

Accolades and Recognition

Throughout his career, Dr. Vaiyapuri has received numerous accolades and recognition for his contributions to the field of energy storage. Notably, he was awarded the Best Poster Award at the 2020 Virtual MRS Spring/Fall Meeting & Exhibit for his work on aqueous rechargeable Zn-Ion batteries. His research has been presented at prestigious international conferences, including the 4th International Conference on New Energy and Future Energy Systems in Macao, China, and the 6th International Symposium on Advanced Electromaterials in Jeju, South Korea.

Impact and Influence

Dr. Vaiyapuri's work has had a profound impact on the field of energy storage, particularly in the development of eco-friendly energy storage devices and high-energy cathodes for sodium-ion batteries. His innovative research has led to the improvement of energy efficiency and cost reduction in battery materials, contributing to the sustainability and advancement of energy storage technologies. His mentoring and leadership in guiding master's and Ph.D. students have also played a crucial role in shaping the next generation of researchers in the field.

Legacy and Future Contributions

Dr. Vaiyapuri's legacy is marked by his relentless pursuit of innovation and excellence in material chemistry and energy storage. His contributions have paved the way for future advancements in battery technology, with a focus on sustainability and efficiency. As he continues to lead and inspire research in the field, his future contributions are anticipated to drive significant breakthroughs in energy storage solutions, further cementing his position as a pioneering researcher in material chemistry.

 

Notable Publications

Two in one: The use of hexagonal copper sulfide (CuS) nanoparticles as a bifunctional high-performance cathode and as a reinforced electrolyte additive for an all-solid-state lithium battery 2024

Decoding the Manganese-Ion Storage Properties of Na1.25V3O8 Nanorods 2024 (1)

Pentlandite Compound-Anchored CuSCN as a Stable Electrocatalyst in Highly Alkaline Solutions 2024

Na3VMn0.5Ti0.5(PO4)3/C with active Na+ hopping sites for high-rate and durable sodium-ion batteries 2023 (7)

Exploring low-cost high energy NASICON cathodes for sodium-ion batteries via a combined machine-learning, ab initio, and experimental approach 2023 (6)

 

 

Haoming Ma | Energy | Best Researcher Award

Dr. Haoming Ma | Energy | Best Researcher Award

University of Texas at Austin | United States

Author profile

Scopus

Orcid

Early Academic Pursuits

Dr. Haoming Ma's academic journey began with a Bachelor's in Energy Engineering, complemented by minors in Environmental Engineering and Energy Business and Finance. He pursued his passion further, earning a Master's in Energy and Mineral Engineering, exploring the impacts of blackout cost recovery on stock behavior among electric utilities. His academic pursuits culminated in a Ph.D. in Chemical and Petroleum Engineering, focusing on data-driven carbon dioxide enhanced oil recovery models and their applications.

Professional Endeavors

Dr. Ma's professional journey encompasses diverse roles, from a Sessional Instructor at the Schulich School of Engineering to a Postdoctoral Fellow at the Energy Emissions Modeling and Data Lab, University of Texas at Austin. He also served as a Postdoctoral Research Associate at the Department of Chemical & Petroleum Engineering, University of Calgary. His research interests span reservoir simulation, system-level modeling, machine learning applications, and life cycle assessment.

Contributions and Research Focus

Dr. Ma's research integrates system modeling, data analytics, economic, and policy analysis to address economic and environmental challenges in energy systems and climate change mitigation. He has led and contributed to numerous research projects, focusing on CO2 capture, utilization, and sequestration, as well as unconventional resources recovery and hydrogen production and storage. His work provides a scientific foundation for technology and policy development towards environmental sustainability and carbon neutrality.

Accolades and Recognition

Dr. Ma's contributions have been recognized through various awards, including the Alberta Graduate Excellence Scholarship and the Chemical & Petroleum Engineering Graduate Excellence Award. He has also received accolades for his teaching excellence, including the Outstanding Graduate Teaching Assistant Award.

Impact and Influence

Dr. Ma's research publications, peer-reviewed articles, and conference proceedings demonstrate his significant impact on the field of energy and environmental engineering. His innovative approaches to techno-economic analysis and life cycle assessment contribute to shaping sustainable energy solutions globally.

Legacy and Future Contributions

Dr. Ma's leadership roles, professional services, and academic mentoring reflect his commitment to advancing the field and nurturing the next generation of energy leaders. His ongoing research and collaborations aim to drive further innovations in energy technology and policy, leaving a lasting legacy in the pursuit of environmental sustainability and carbon neutrality.

Notable Publications

Technical analysis of a novel economically mixed CO2-Water enhanced geothermal system 2024

Comparative data-driven enhanced geothermal systems forecasting models: A case study of Qiabuqia field in China 2023

Thermo-economic optimization of an enhanced geothermal system (EGS) based on machine learning and differential evolution algorithms 2023

Numerical simulation of bitumen recovery via supercritical water injection with in-situ upgrading 2022 (12)

Optimized schemes of enhanced shale gas recovery by CO2-N2 mixtures associated with CO2 sequestration 2022 (21)

 

 

Gajendra Singh Chawda | Engineering | Best Extension Activity Award

Dr. Gajendra Singh Chawda | Engineering | Best Extension Activity Award

University of Michigan-Dearborn | United States

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Gajendra Singh Chawda pursued his educational journey with a Bachelor of Technology in E & E Engineering from RGPV Bhopal, followed by a Master of Technology in Power System from NIT Kurukshetra. He completed his Ph.D. in Electrical Engineering from IIT Jodhpur, specializing in Renewable Energy Penetration and Adaptive Controls.

Professional Endeavors

As a Research Associate, Gajendra led projects in the development of novel high-frequency distribution systems and Electric Vehicle (EV) charging and discharging control using machine learning-based algorithms. He also contributed significantly to the construction of DC Microgrid experimental prototypes.

Contributions and Research Focus

Gajendra's research interests encompass a wide array of topics, including power systems, power electronics applications in distribution systems, renewable energy penetration, and grid-forming inverters. He has extensively studied adaptive control algorithms, big data analysis, and the application of AI/ML in power systems.

Accolades and Recognition

Gajendra received prestigious awards such as the Vishweshwaraya Scholarship Award for his Ph.D. and travel grants from IEEE-PES and CSIR-India for international conferences. He has delivered expert lectures in various academic programs and actively participated in technical events and professional organizations.

Impact and Influence

His groundbreaking projects and innovative solutions in renewable energy systems and microgrid technology have had a significant impact on advancing sustainable energy solutions. His contributions to research and development have been published in reputable journals, including IEEE Transactions and Elsevier.

Legacy and Future Contributions

Gajendra's commitment to pushing the boundaries of research and developing sustainable energy solutions is evident in his ongoing projects and collaborations. He continues to share his knowledge through academic mentoring, expert lectures, and participation in conferences, contributing to the broader academic community's advancement in electrical engineering and renewable energy.

Notable Publication

A reactive power-based adaptive approach for synchronization of DFIG into the weak grid to support existing WE infrastructure 2024

Power Quality Improvement in Rural Grid Using Adaptive Control Algorithm to Enhance Wind Energy Penetration Levels 2023 (9)

Performance Improvement of Weak Grid-Connected Wind Energy System Using FLSRF-Controlled DSTATCOM 2023 (10)

Fuzzy logic based Vehicle to Grid Controller for Voltage Regulation in Distribution Network with Solar-PV Penetration 2023

Enhancement of Wind Energy Penetration Levels in Rural Grid Using ADALINE-LMS Controlled Distribution Static Compensator 2022 (29)