Lixing Zheng | Energy | Best Researcher Award

Dr. Lixing Zheng | Energy | Best Researcher Award

PowerChina Chongqing Engineering Co., Ltd | China

Author Profile

Scopus

Early Academic Pursuits 🎓

Dr. Lixing Zheng’s academic journey began at the South China University of Technology, where he earned both his bachelor’s (2016) and master’s degrees (2019) in Mechanical and Electrical Engineering. His passion for energy research led him to pursue a PhD at the Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (2019–2023), where he focused on hydrogen energy production and low-carbon scenario analysis. His doctoral research laid the foundation for groundbreaking studies in hydrogen energy efficiency, carbon emissions, and energy transformation strategies.

Professional Endeavors 🏢

After completing his PhD, Dr. Zheng transitioned into postdoctoral research at PowerChina Chongqing Engineering Co., Ltd. in December 2023. His work continues to address critical energy challenges, focusing on hydrogen energy production, life cycle assessment (LCA) models, and low-carbon development pathways. He has also collaborated with prominent institutions and industry leaders, including the Chinese Academy of Engineering, Shanghai Electric Group, and Honda R&D China Co., Ltd., contributing to key projects in sustainable energy and industrial innovation.

Contributions and Research Focus 🔬

Dr. Zheng’s research spans multiple areas in sustainable energy, with a strong emphasis on hydrogen production technologies, carbon emissions reduction, and economic feasibility studies. His notable contributions include:

  • Hydrogen Energy Research: Development of LCA models to assess hydrogen production efficiency and carbon footprints.
  • Low-Carbon Transition Strategies: Medium and long-term scenario analysis for energy transformation in the Guangdong-Hong Kong-Macao Greater Bay Area.
  • Industrial Innovation: Evaluation of hydrogen metallurgy as an alternative for reducing emissions in the steel industry.
  • Waste Management and Renewable Energy: Modeling of wind power waste generation and end-of-life strategies in China.

His extensive work is reflected in multiple high-impact journal publications, including:

  • Journal of Engineering Thermophysics (Award-winning paper on hydrogen production routes)
  • International Journal of Hydrogen Energy
  • Progress in New Energy
  • Resources, Conservation and Recycling
  • Sustainability

Accolades and Recognition 🏆

Dr. Zheng’s contributions to hydrogen energy and sustainability research have earned him prestigious accolades:

  • 2024 Outstanding Paper Award from the Journal of Engineering Thermophysics.
  • 2024 Global Top Ten Award for the Commercialisation of Research Results by Engineers, highlighting his ability to bridge the gap between academic research and real-world applications.

Impact and Influence 🌍

Dr. Zheng’s work plays a crucial role in shaping China’s energy transition policies and advancing green technologies. His research on hydrogen energy supply scenarios and carbon neutrality goals has influenced decision-making in both government and industry sectors, paving the way for sustainable energy solutions.

Legacy and Future Contributions 🔮

With a growing portfolio of influential research and industry collaborations, Dr. Zheng is set to become a leading figure in hydrogen energy innovation. His future contributions will likely focus on enhancing hydrogen production efficiency and expanding its commercial applications, developing comprehensive LCA frameworks to support low-carbon policies, and strengthening partnerships with global energy stakeholders to accelerate clean energy adoption.

Publications


  • 📄 A Study of the Life Cycle Exergic Efficiency of Hydrogen Production Routes in China
    Authors: Lixing Zheng, Xian Jiang, Xue Zhang, Shuang Wang, Rui Wang, Lijun Hu, Kai Xie, Peng Wang
    Journal: Sustainability
    Year: 2025


  • 📄 Assessing Energy Consumption, Carbon Emissions, and Costs in Biomass-to-Gas Processes: A Life-Cycle Assessment Approach
    Authors: Ming Liu, Jian Zeng, Guohua Huang, Xiaohong Liu, Guoqiang He, Shun Yao, Ning Shang, Lixing Zheng, Peng Wang
    Journal: Sustainability
    Year: 2024


  • 📄 Medium and Long-Term Hydrogen Production Technology Routes and Hydrogen Energy Supply Scenarios in Guangdong Province
    Authors: Lixing Zheng, Daiqing Zhao, Wenjun Wang
    Journal: International Journal of Hydrogen Energy
    Year: 2023


  • 📄 Analysis of the Alternative Potential and Economic Benefits of Hydrogen Metallurgy Technology in the Iron and Steel Industry—A Case Study of Guangdong Province
    Authors: Lixing Zheng, Genglin Dong, Peng Wang, Daiqing Zhao
    Journal: Progress in New Energy
    Year: 2023


  • 📄 Research on Energy Efficiency, Carbon Emissions, and Economics of Hydrogen Production Routes in China Based on Life Cycle Assessment
    Authors: Lixing Zheng, Daiqing Zhao, Xiaoling Qi, et al.
    Journal: Journal of Engineering Thermophysics
    Year: 2022


 

Tianxu Shen | Energy | Best Researcher Award

Dr. Tianxu Shen | Energy | Best Researcher Award

Nanjing Normal University | China

Author Profile

Scopus

Early Academic Pursuits 🎓

Dr. Tianxu Shen pursued his Ph.D. at Nanjing Normal University, where he developed a strong foundation in chemical looping combustion (CLC) and fluidized bed reactors. His academic training emphasized the development of high-efficiency energy systems and carbon capture technologies, setting the stage for his groundbreaking research in reactor design and solid fuel conversion.

Professional Endeavors 🏛️

As a leading researcher in the field, Dr. Shen has played a critical role in the scaling-up principles of CLC reactors. His extensive experience includes designing and operating interconnected fluidized bed reactors, including a 5 kWth multi-stage CLC reactor with internal fluidization components and a micro-scale serial fluidized bed reactor. His expertise has significantly advanced the operational tolerance and fuel adaptability of CLC systems, contributing to the next generation of carbon capture and energy-efficient technologies.

Contributions and Research Focus 🔬

Dr. Shen's research is dedicated to improving oxygen carrier modulation and solid fuel conversion, key components in enhancing binary particle gas-solid flow dynamics and reaction process intensification. His work has established a CLC reactor design methodology that integrates high operational tolerance, broad fuel adaptability, and efficient carbon capture. His contributions extend to national and international projects, including the National Key R&D Program on coal-based CLC and gasification technologies and a key NSFC International Collaboration Project with Germany.

Accolades and Recognition 🏅

Dr. Shen has been widely recognized for his contributions to chemical looping technology. His achievements include:

  • Principal investigator of three research projects funded by the National Natural Science Foundation of China (NSFC) and provincial-level foundations.
  • Eight granted patents on CLC technology and over 20 peer-reviewed publications, accumulating more than 500 citations.
  • Recipient of the Outstanding Oral Presentation Award at the Second China Chemical Looping Conference.
  • Selected for the Jiangsu Province Dual-Innovation Doctoral Talent Program and the Jiangsu Youth Science and Technology Talent Support Program.
  • His research outcomes have been acknowledged as one of the five flagship achievements of Southeast University’s “Double First-Class” Energy Discipline.
  • Featured as a recommended highlight in the 70th-anniversary special issue of Huazhong University of Science and Technology.

Impact and Influence 🌍

Dr. Shen’s innovations in chemical looping reactor technology have had a profound impact on energy utilization and carbon capture. His work in high-performance CLC reactors has set new benchmarks for solid fuel conversion efficiency, enhancing sustainability in energy production. His patents and publications are widely cited, reflecting the scientific and industrial impact of his research in global carbon reduction strategies.

Legacy and Future Contributions 🌟

Dr. Shen’s pioneering efforts in fluidized bed reactor design and chemical looping technology will continue to shape the future of clean energy and carbon capture. As a key figure in international research collaborations, his work is expected to drive next-generation energy solutions. His legacy will be defined by his contributions to high-efficiency, low-emission combustion technologies, ensuring a more sustainable energy future for generations to come.

 

Publications


📄 Transforming sulfur paste into sulfuric acid through chemical looping combustion of sulfur with Fe-based oxygen carriers: Thermodynamics, conversion, and mechanisms analysis
Author(s): P. Wang, Peng; Z. Qin, Zhixuan; T. Shen, Tianxu; L. Shen, Laihong; T. Song, Tao
Journal: Fuel
Year: 2025


📄 Periodic abrasion and agglomeration development in hematite and ilmenite oxygen carriers: Long-Term redox cycling analysis via fluidized bed TGA
Author(s): T. Shen, Tianxu; C. Qin, Chao; T. Song, Tao; D. Sun, Dali
Journal: Fuel
Year: 2025


 

XiaoFei Zhen | Energy | Best Researcher Award

Mr. XiaoFei Zhen | Energy | Best Researcher Award

Lanzhou Jiaotong University | China

Author Profile

Scopus

🌱 Early Academic Pursuits

Zhen Xiaofei,  embarked on his academic journey with a strong foundation in engineering and energy sciences. His passion for renewable energy and sustainability led him to pursue a PhD, which laid the groundwork for his future research in biomass energy and distributed energy systems.

💼 Professional Endeavors

Now a professor and doctoral supervisor, Dr. Zhen serves as the director of multiple research centers at Lanzhou Jiaotong University, including the Institute of Biomass Energy and the Joint Research Center of Solar Energy and Digital Agricultural Engineering Technology. His leadership extends to guiding the Innovation and Entrepreneurship Base for New Energy Equipment and mentoring students in cutting-edge energy solutions.

🔬 Contributions and Research Focus

Dr. Zhen's research focuses on distributed energy supply systems integrating multiple renewable energy sources, biomass energy conversion, solar thermal power generation, and green, low-carbon buildings. He has spearheaded over 20 significant research projects, including those funded by the National Natural Science Foundation and the National Key R&D Program, contributing valuable advancements in sustainable energy solutions.

🏆 Accolades and Recognition

Recognized as an Outstanding Youth Fund recipient in Gansu Province, Dr. Zhen has earned numerous accolades, including the Golden Bridge Award from the China Technology Market Association and the China Industry-University-Research Cooperation Innovation and Promotion Award. His expertise is widely acknowledged as a peer reviewer for prestigious journals like Energy, Agronomy Journal, and Acta Energiae Solaris Sinica.

🌍 Impact and Influence

Beyond academia, Dr. Zhen actively shapes the next generation of energy innovators. His mentorship has guided students to win over 30 provincial and national awards in academic competitions, fostering innovation in renewable energy and sustainable technologies. His efforts have also led to the successful approval of over 10 provincial innovation and entrepreneurship training programs for students.

🔮 Legacy and Future Contributions

With a profound commitment to sustainable energy, Dr. Zhen continues to push the boundaries of renewable energy integration and green building technologies. His research and mentorship promise to shape the future of clean energy solutions, ensuring a greener and more sustainable world for generations to come.

 

Publications


📖Analysis of Building Envelope for Energy Consumption and Indoor Comfort in a Near-Zero-Energy Building in Northwest China

 Journal: Results in Engineering
 Authors: Xiaofei Zhen, Shange Li, Jianming Peng, Zhouyang Zhao, Xu Zhang, Chuanxi Tan, Ruonan Jiao, Wenbing Wu
 Year: 2025


📖Study on Anaerobic Digestion and the Treatment of Livestock and Poultry Waste Liquid by Nanoparticles and Antibiotics in the Context of Carbon Neutrality and Microbial Ecosystems

 Journal: Agronomy
 Authors: Xiaofei Zhen, Han H. Zhan, Ke K. Li, Lei L. Feng, Tie T. Du
 Year: 2025


📖Modelling and Performance Analysis of Supercritical CO2 Pre-Cooling Cycle Solar Thermal Power Tower System

 Journal: Nongye Gongcheng Xuebao / Transactions of the Chinese Society of Agricultural Engineering
 Authors: Xiaofei Zhen, Li L. Zhang, Yongheng Y. Zhang, Zhihui Z. He
Year: 2024


📖 Robust Control of Wind Turbines to Reduce Wind Power Fluctuation

 Journal: Energy Science and Engineering
Authors: Min'an M. Tang, Wenjuan W. Wang, Xiaofei Zhen, Yaqi Y. Zhang, Yaguang Y. Yan
 Year: 2024


📖 Cost-Effective and Scalable Solar Interface Evaporators Derived from Industry Waste for Efficient Solar Steam Generation

 Journal: Langmuir
Authors: Jingxian J. He, Jianxia J. Liu, Hao H. Gou, Yongqiang Y. Kang, An A. Li
 Year: 2024


 

Ramesh C | Energy | Best Researcher Award

Dr. Ramesh C | Energy | Best Researcher Award

Kalaignar Karunanidhi Institute of Technology | India

Author Profile

Orcid

Google Scholar

Early Academic Pursuits 📚

Dr. Ramesh C embarked on his academic journey with an exceptional foundation in mechanical engineering. Completing his Diploma in Mechanical Engineering at the Government Polytechnic College, Tuticorin, with distinction, he progressed to earn a Bachelor’s degree from P.S.R. Engineering College, Sivakasi. His quest for excellence led him to pursue a Master’s in Thermal Engineering at the Government College of Technology, Coimbatore, followed by a Ph.D. in Mechanical Engineering from Anna University, Chennai, where his work received high commendation in September 2022.

Professional Endeavors 🛠️

Dr. Ramesh has been a cornerstone at the Kalaignar Karunanidhi Institute of Technology (KIT), Coimbatore, serving as an Associate Professor in Mechanical Engineering since June 2012. His tenure spans over 12 years and 7 months, during which he has inspired countless students and contributed significantly to academic excellence. He has also undertaken critical administrative roles, including Assistant Controller of Examinations and Overall Examination Cell Coordinator, showcasing his leadership in maintaining academic integrity and efficiency.

Contributions and Research Focus 🔬

Dr. Ramesh's contributions to the field of thermal and renewable energy systems are profound. With 18 international journal publications, including groundbreaking research in solar energy and nanofluid applications, his work is highly cited (109 citations, h-index: 6, i10-index: 3). His research focuses on optimizing solar energy systems, enhancing energy efficiency, and developing sustainable technologies. Key projects include performance analysis of solar collectors and integration of photovoltaic systems for maximum energy output.

Accolades and Recognition 🏆

Dr. Ramesh’s scholarly output and impactful research have earned him recognition in reputed journals with significant impact factors. His innovative work has been featured in prestigious platforms like Sustainability and Energy & Environment. He has also contributed to international book chapters and presented his findings in multiple international and national conferences, further solidifying his reputation as a thought leader in mechanical engineering.

Impact and Influence 🌟

As an educator, Dr. Ramesh has adeptly handled diverse subjects, ranging from Heat and Mass Transfer to Renewable Energy Sources, equipping students with practical and theoretical knowledge. His administrative acumen has improved examination processes and ensured seamless academic operations. His commitment to research and education continues to inspire peers and students alike.

Legacy and Future Contributions 🌍

Dr. Ramesh’s dedication to innovation, sustainability, and academic excellence sets a benchmark for future engineers and researchers. His ongoing work in renewable energy technologies promises to contribute significantly to addressing global energy challenges. With a legacy rooted in excellence and impact, Dr. Ramesh is poised to shape the future of engineering and technology, inspiring generations to come.

 

Publications


📘 Optimizing Performance of a Solar Flat Plate Collector for Sustainable Operation Using Box–Behnken Design (BBD)
 Authors: C. Ramesh, Hariprsad P., Almeshaal, M., Manoj Kumar, P.
Year: 2025
 Journal: Sustainability


📘 Enhanced Honey Badger Optimization of Performance Analysis of Evacuated Tube Heat Pipe Solar Collector Integrated with PCM Storage Unit
Authors: C. Ramesh, M. Vijayakumar, G. Kumaresan, Benjamin Franklin Selvanayagam
 Year: 2023
Journal: Energy & Environment


📘 Solar Thermal System Integration Studies to Determine the Influence on Solar Photovoltaic Module Efficiency
Authors: Ramesh C., Vijayakumar M., Sathessh Kumar S., Vijaya Kumar M.
 Year: 2022
Journal: NeuroQuantology


📘 Mechanical and Morphological Studies of Sansevieria trifasciata Fiber-Reinforced Polyester Composites with the Addition of SiO2 and B4C
 Authors: Hariprasad P., Kannan M., Ramesh C., Felix Sahayaraj A., Jenish I., Fayaz Hussain, Nidhal Ben Khedher, Attia Boudjemline, Suresh V.
 Year: 2022
 Journal: Advances in Materials Science and Engineering


📘 Analyzing Thermal Performance of a Solar PV Using a Nanofluid
 Authors: Kedri Janardhana, Sivakumar A., Suresh R., Ramesh C., Syed Musthafa A., Satyendra Vishwakarma
Year: 2022
 Journal: Materials Today


 

Aso Ali Abdalmohammed Shateri | Engineering | Best Researcher Award

Mr. Aso Ali Abdalmohammed Shateri | Engineering | Best Researcher Award

Zhejiang University | China

Author Profile

Orcid

🌱 Early Academic Pursuits

From a young age, Mr. Aso Ali Abdalmohammed Shateri displayed a keen interest in the sciences, particularly physics. His educational journey began with a Bachelor of Science and Education in Physics from the University of Garmian (2016–2017), where he developed a strong foundation in theoretical and practical physics. This passion led him to pursue a Master of Science in Nano Optoelectronics at Universiti Sains Malaysia (2019–2020), further honing his expertise in cutting-edge technologies. Currently, he is a Ph.D. candidate in Electronic Science and Technology at the prestigious Zhejiang University, China, focusing on information science and electronic engineering.

💼 Professional Endeavors

Mr. Shateri’s career is marked by his dedication to education and research. As a Full-Time Lecturer at the University of Garmian, he has shared his expertise in physics with aspiring students. Additionally, his experience extends to part-time roles at United Skills Private Institute, where he taught diverse subjects, including electronics, mathematics, and energy resources. Beyond academia, he has ventured into roles such as accounting and sales, showcasing his versatility and adaptability in various professional settings.

🔬 Contributions and Research Focus

With a strong focus on nano-optoelectronics and electronic science, Mr. Shateri has been an active contributor to the field of advanced physics and engineering. His laboratory skills, coupled with proficiency in programming tools like MATLAB, have enabled him to conduct significant research in electronic systems and information technologies. He has also participated in numerous workshops and seminars, including an International Workshop on the Large Hadron Collider, underscoring his commitment to staying at the forefront of scientific innovation.

🏆 Accolades and Recognition

Mr. Shateri has been recognized for his academic and professional achievements with a Scientific Nickname (Assistant Lecturer) from the University of Garmian. His certifications in pedagogical training and numerous HP LIFE courses reflect his dedication to continuous learning and professional growth. Additionally, he has earned diplomas in project management, human resource management, and the petroleum industry, demonstrating his multidisciplinary expertise.

🌍 Impact and Influence

As an educator, Mr. Shateri has had a profound impact on his students, inspiring them to pursue careers in science and technology. His contributions to curriculum development and pedagogy have enhanced the quality of education at the institutions he has served. Through his volunteer work, including mentoring Grade 12 students in physics and mathematics, he has also shown a deep commitment to community development.

Legacy and Future Contributions

Looking ahead, Mr. Shateri aims to bridge the gap between academic research and practical applications, particularly in the fields of nano-optoelectronics and sustainable technologies. His vision includes fostering innovation in electronic science and mentoring the next generation of scientists. With his unwavering dedication to excellence, he is poised to leave a lasting legacy in the realms of academia, research, and technology.

 

Publication


📄 Generating a Full Cycle of Alternative Current Using a Triboelectric Nanogenerator for Energy Harvesting

  •  Authors: Aso Ali Abdalmohammed Shateri, Fengling Zhuo, Dr. Nazifi Sani Shuaibu, Rui Wan, Liangquan Xu, Dinku Hazarika, Bikash Gyawali, Xiaozhi Wang
  •  Journal: Micromachines
  •  Year: 2024

 

Alice Cervellieri | Engineering | Best Researcher Award

Dr. Alice Cervellieri | Engineering | Best Researcher Award

Politecnico di Torino | Italy

Author Profile

Scopus

Google Scholar

Early Academic Pursuits 🎓

Dr. Alice Cervellieri began her academic journey with a Bachelor’s degree in Civil and Environmental Engineering from the University of Engineering, Bologna, in 2005, achieving a perfect score of 110/110 laude. Her pursuit of excellence continued with a Master’s degree in Civil Engineering from the same institution in 2011. Notably, she expanded her intellectual horizons by earning a Bachelor’s degree in Linguistic Mediation Sciences from the School of Advanced Linguistic Mediation in 2019, graduating with an outstanding average of 29. Her educational endeavors were further enriched by certifications and specialized training. She participated in the ERASMUS Virtual Exchange program in 2020, focusing on dialogue facilitation, and completed the “Certificatore Energetico” course by Assform in 2016, gaining qualifications as an energy certifier. Dr. Cervellieri also acquired advanced knowledge in digital transformation technologies through a prestigious course at the Massachusetts Institute of Technology (MIT) in 2021.

Professional Endeavors 🌍

Dr. Cervellieri has played significant roles in academia and professional training. She served as a visiting professor at the Catholic University of Manizales, Colombia, in November 2020. Her teaching contributions also include assignments for the Emilia Romagna Region’s “Energy Certifier” course and tutoring roles for EUSAIR Week. Since 2021, she has been a mentor for Harvard University’s Mentorship Project, showcasing her dedication to fostering the next generation of scholars. Her formal qualifications to practice civil engineering were solidified by passing the state examination at the Polytechnic University of Marche in 2016. These accomplishments underscore her dual commitment to practical engineering applications and academic mentorship.

Contributions and Research Focus 🔄

Dr. Cervellieri’s research lies at the intersection of energy analysis and comfort optimization in residential and rural buildings. Her studies delve into established metrics such as PMV (Predicted Mean Vote) and PPD (Percentage of People Dissatisfied), as well as the development of novel indices like OTE and OEE. These indices, drawn from the manufacturing sector, have been innovatively adapted to enhance energy efficiency and occupant comfort. Her international collaborations have facilitated the development of groundbreaking algorithms, as evidenced by her impressive publication record. Dr. Cervellieri’s contributions include six publications in international scientific journals, ten conference proceedings, six books, two posters, and a national journal article.

Accolades and Recognition 🏆

Dr. Cervellieri’s academic achievements have been consistently recognized. Her selection as a mentor for prestigious projects like the Harvard Mentorship Program underscores her global standing as an educator and researcher.

Impact and Influence 💡

Dr. Cervellieri has significantly influenced the field of sustainable engineering through her participation in international projects. She contributed to the EU H2020 Project "ENCORE," which focused on energy-aware BIM Cloud Platforms for efficient building renovation. Additionally, her work in the EFRE-FESR Project "Brotweg" explored innovative mechanized solutions for high-altitude cereal production in alpine environments. These projects reflect her commitment to sustainable development and technological advancement. Her participation in the Erasmus+ Virtual Exchange project (2018-2020) exemplifies her dedication to fostering intercultural learning and virtual collaboration, providing young minds with transformative educational experiences.

Legacy and Future Contributions 🌱

Dr. Alice Cervellieri’s legacy is one of interdisciplinary excellence and global collaboration. Her contributions to energy-efficient building systems and educational mentorship are poised to leave a lasting impact on the fields of civil engineering and sustainable development. With her commitment to innovation and fostering cross-cultural dialogue, she is well-positioned to continue influencing academia and industry for years to come. As she advances her career, Dr. Cervellieri’s work will undoubtedly inspire future engineers and researchers to embrace sustainability and technological innovation as integral components of their practice.

 

Publications


📄 A Feed-Forward Back-Propagation Neural Network Approach for Integration of Electric Vehicles into Vehicle-to-Grid (V2G) to Predict State of Charge for Lithium-Ion Batteries
Authors: Alice Cervellieri
Journal: Energies
Year: 2024


📄 On the Synthesis of Holonic Management Trees
Authors: Pirani, M., Bonci, A., Cervellieri, A., Longhi, S.
Journal: IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
Year: 2021


📄 Innovative Approach in Cyber-Physical System for Smart Building Efficiency Monitoring
Authors: Bonci, A., Cervellieri, A., Longhi, S., Pirani, M.
Journal: IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
Year: 2021


📄 The Double Propeller Ducted-Fan, an UAV for Safe Infrastructure Inspection and Human-Interaction
Authors: Bonci, A., Cervellieri, A., Longhi, S., Nabissi, G., Antonio Scala, G.
Journal: IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
Year: 2020


📚 Brotweg—A Path of Bread in an Alpine Environment: New Mechanical Solutions for Grain Processing in Steep Mountain Slopes
Authors: Mayr, S., Brozzi, R., Cervellieri, A., Sacco, P., Mazzetto, F.
Journal: Lecture Notes in Civil Engineering
Year: 2020


 

Shengyang Dong | Materials Science | Best Researcher Award

Prof. Shengyang Dong | Materials Science | Best Researcher Award

Nanjing University of Information Science and Technology | China

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 📚

Prof. Shengyang Dong embarked on his academic journey at Nanjing University of Aeronautics and Astronautics, where he earned his Doctor of Engineering degree in June 2019. During his Ph.D., he had the invaluable opportunity to study as an exchange scholar at Oregon State University under the guidance of Prof. Xiulei Ji (2016–2017). This exposure enriched his expertise and broadened his research horizons. He later joined Nanjing University of Information Science and Technology, marking the start of an illustrious academic career. Prof. Dong’s academic roots laid the foundation for his groundbreaking work in sustainable energy storage and conversion systems.

Professional Endeavors 🏛️

After joining Nanjing University of Information Science and Technology, Prof. Dong dedicated himself to advancing research in energy storage. As a Macao Young Scholar (2023–2025), he expanded his professional experience at the University of Macau. His efforts have resulted in the successful completion of seven research projects and the publication of 61 SCI papers, garnering over 5,300 citations. Prof. Dong has also made significant contributions through consultancy projects, editorial roles, and collaborations with renowned researchers worldwide. His professional journey reflects a blend of academic rigor and innovative vision.

Contributions and Research Focus 🔬

Prof. Dong’s research primarily targets sustainable energy storage and conversion technologies, focusing on aqueous batteries, Na-ion batteries, and dual-ion batteries. He pioneered studies on the electrode–charge carrier ion interaction, revealing its profound impact on electrochemical performance. By exploring the role of chemical bonding, such as hydrogen bonds in NH4+ and metal oxide systems, he introduced novel factors influencing battery design. These findings have paved new paths for optimizing electrode and charge carrier interactions, offering a transformative approach to energy storage device development.

Accolades and Recognition 🏆

Prof. Dong's achievements have earned him recognition in academic and professional circles. He holds nine patents and has contributed chapters to two notable books, enhancing the understanding of energy storage systems. He serves on the editorial boards of leading journals like Materials Research Letters and Rare Metals. His contributions to the field are widely acknowledged, with collaborators spanning institutions such as Zhejiang University, Nanjing Tech University, and the City University of Hong Kong. Prof. Dong’s work continues to inspire innovation and collaboration in energy storage research.

Impact and Influence 🌍

The impact of Prof. Dong’s research extends beyond academic publications. His insights into electrode–ion interactions have reshaped the design principles for electrochemical storage devices, influencing both theoretical studies and practical applications. By addressing challenges in sustainability and performance, his work contributes significantly to global efforts in developing efficient energy storage solutions. His patents and consultancy projects underscore the translational impact of his research, bridging the gap between academia and industry.

Legacy and Future Contributions 🔮

As an academic leader, Prof. Dong’s legacy lies in his transformative contributions to sustainable energy technologies. His dedication to mentoring the next generation of scientists, collaborating with global experts, and exploring innovative research avenues ensures a lasting impact. Looking ahead, his work promises to drive advancements in energy storage solutions, aligning with the world’s transition to renewable energy systems. With a robust foundation and a visionary approach, Prof. Dong is poised to leave an enduring mark on the field of energy storage and beyond.

 

Publications


📄Fast synthesis of high-entropy oxides for lithium-ion storage
Author(s): Ren, R., Xiong, Y., Xu, Z., Yin, K., Dong, S.
Journal: Chemical Engineering Journal
Year: 2024


📄Ru-induced lattice expansion of metallic Co with favorable surface property for high-efficiency water electrolysis
Author(s): Shen, J., Zhang, M., Huang, Y., Wang, S., Shao, H.
Journal: Applied Catalysis B: Environmental
Year: 2024


📄Aqueous “rocking-chair” Mn-ion battery based on an industrial pigment anode
Author(s): Dong, S., Xu, Z., Cao, Z., Li, J., Dong, X.
Journal: Chemical Engineering Journal
Year: 2024


📄Synthesis of spinel (Mg₀.₂Co₀.₂Ni₀.₂Cu₀.₂Zn₀.₂)Fe₂O₄ in seconds for lithium-ion battery anodes
Author(s): Ren, R., Wu, D., Zhang, J., Zhang, Y., Dong, S.
Journal: Journal of Materials Chemistry A
Year: 2024


📄3D Printing of MXene-Enhanced Ferroelectric Polymer for Ultrastable Zinc Anodes
Author(s): Zhu, G., Zhang, H., Lu, J., Pang, H., Zhang, Y.
Journal: Advanced Functional Materials
Year: 2024


 

Félix López | Energy | Best Researcher Award

Dr. Félix López | Energy | Best Researcher Award

CSIC-CENIM | Spain

Author Profile

Scopus

Orcid

Google Scholar

🎓 Early Academic Pursuits

Dr. Félix Antonio López began his illustrious academic journey in Chemistry at the University of Valladolid, where he earned his Doctorate in Chemical Sciences in 1987. His early teaching tenure included a role at the Department of Geochemistry at the same university from 1983 to 1984. This foundational period marked the beginning of his deep engagement with scientific exploration and laid the groundwork for his future innovations.

💼 Professional Endeavors

In 1985, Dr. López joined the Spanish National Research Council (CSIC) through a prestigious fellowship from the Plan for Research Personnel Training. By 1987, he was appointed as a Scientific Collaborator at CSIC, and in 1990, he was promoted to Scientific Researcher. His career trajectory at CSIC included key administrative positions such as Technical Deputy Director of the National Center for Metallurgical Research (CENIM) from 2000 to 2005 and Vice Director of Training, Communication, and Technology Transfer from 2013 to 2021. Dr. López has also been instrumental in fostering interdisciplinary collaboration through his roles in national and international committees related to material recycling. He has evaluated projects for leading agencies such as ANEP, ANECA, and SPRIT, reinforcing his reputation as a thought leader in his field.

🔬 Contributions and Research Focus

Dr. López's scientific endeavors are deeply rooted in material recycling and sustainable innovation. He holds 25 patents and industrial secrets, demonstrating his commitment to practical solutions for pressing global challenges. As Director of the Laboratory for Material Recycling at CENIM-CSIC and Head of the TecnoEco Research Group, Dr. López has advanced research in recycling wind turbine blades and waste from the aerospace industry.

Notably, he has founded two spin-off companies:

  1. B_Circular (2016): Focused on recycling technologies for wind turbine blades and aerospace waste.
  2. NM4CB (2023): Dedicated to developing materials for biogas and flue gas purification.

With 205 publications, 4,402 citations, and an h-index of 35 (Scopus, 2023), Dr. López has significantly influenced the field of recycling and material science.

🏆 Accolades and Recognition

Dr. López's groundbreaking contributions have earned him numerous accolades:

  • Ecoembes R Award (2012): Recognized for the most innovative project in material recycling.
  • Repsol Foundation Entrepreneur Fund Finalist (2014 & 2015): Acknowledged for pioneering entrepreneurial ventures.
  • Enel Challenge Open Innovability Award (2020): Celebrated for innovative approaches in sustainability.

His editorial leadership as Chief Editor of Revista de Metalurgia further solidifies his standing in the academic community.

🌍 Impact and Influence

Dr. López's work transcends academia, impacting industries such as energy, aerospace, and environmental management. His patented technologies and innovative recycling methods are driving sustainability and circular economy practices on a global scale. Additionally, he has mentored emerging scholars, supervising two doctoral theses in the last decade.

🔮 Legacy and Future Contributions

Dr. López's visionary leadership and groundbreaking research establish him as a pivotal figure in material recycling and sustainable technologies. His continued dedication to innovation ensures a lasting legacy that will inspire future generations of scientists and industry leaders. In conclusion, Dr. Félix Antonio López exemplifies excellence in research, innovation, and leadership. His career is a testament to the power of scientific ingenuity in addressing real-world challenges, making him a deserving candidate for recognition as a Best Researcher.

 

Publications


📜 Purification of Li₂CO₃ Obtained through Pyrometallurgical Treatment of NMC Black Mass from Electric Vehicle Batteries

  • Authors: Laura Rosso, Lorena Alcaraz, Olga Rodríguez-Largo, Félix A. López
  • Journal: Chemistry Europe
  • Publication Year: 2024

📜 Recovery of Lithium from Spent NMC Batteries Through Water Leaching, Carbothermic Reduction, and Evaporative Crystallization Process

  • Authors: L. Alcaraz, O. Rodríguez-Largo, G. Barquero-Carmona, Félix A. López
  • Journal: Journal of Power Sources
  • Publication Year: 2024

📜 Exploring Titanium Niobium Oxides Recovered from Columbotantalite Mineral as Lithium-Ion Battery Electrodes

  • Authors: B. Sotillo, J. Calbet, I. Álvarez-Serrano, P. Fernández, Félix A. López
  • Journal: Ceramics International
  • Publication Year: 2024

📜 Transformation of Graphite Recovered from Batteries into Functionalized Graphene-Based Sorbents and Application to Gas Desulfurization

  • Authors: R. Fernández-Martínez, I. Ortiz, M.B. Gómez-Mancebo, I. Rucandio, J.M. Sánchez-Hervás
  • Journal: Molecules
  • Publication Year: 2024

📜 Synthesis and Properties of Hydrophilic and Hydrophobic Deep Eutectic Solvents via Heating-Stirring and Ultrasound

  • Authors: M.I. Martín, I. García-Díaz, M.L. Rodríguez, F. del Monte, Félix A. López
  • Journal: Molecules
  • Publication Year: 2024

 

Guodong Tang | Materials Science | Best Researcher Award

Prof. Guodong Tang | Materials Science | Best Researcher Award

Nanjing University of Science and Technology | China 

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 📚

Prof. Guodong Tang's academic journey began with his foundational studies that led him to become a renowned researcher in the field of thermoelectrics and condensed matter physics. He is currently a professor at Nanjing University of Science and Technology. Over the years, he has honed his expertise in thermoelectric materials, magnetic materials, and condensed matter physics, contributing to the advancement of material science with innovative research. His dedication to understanding the interactions of materials at the atomic level has made him a pivotal figure in his field.

Professional Endeavors 💼

Prof. Tang has been serving as a professor at Nanjing University of Science and Technology since 2018, leading cutting-edge research in thermoelectric materials. His role extends beyond teaching as he is deeply involved in various research projects, including those funded by the National Natural Science Foundation of China. His focus has been on exploring new thermoelectric materials and their applications in energy efficiency and environmental sustainability. His professional career has been marked by a strong emphasis on collaboration, both within academic circles and with industry, driving forward innovation in material sciences.

Contributions and Research Focus 🔬

Prof. Tang's research has significantly advanced the understanding of thermoelectric and magnetic materials. His work on the development of high-performance SnSe and SnTe polycrystals has led to breakthroughs in energy conversion technology. His research focuses on understanding the role of metavalent bonds and dopant orbitals, which are essential for designing materials with low thermal conductivity and high thermoelectric efficiency. Prof. Tang's contributions are reshaping how scientists approach material design for energy applications, including efficient energy harvesting and storage systems.

Accolades and Recognition 🏆

Prof. Tang has earned widespread recognition for his pioneering work in thermoelectric materials. His research has been published in top-tier journals such as Nature Communications, Energy & Environmental Science, and Advanced Functional Materials. These publications have significantly impacted the academic community and are cited extensively in related fields. His work continues to inspire new research directions and has earned him prestigious awards, including recognition from major scientific institutions and research organizations.

Impact and Influence 🌍

Prof. Tang’s research has not only advanced scientific understanding but also has real-world applications that address global challenges. His work on thermoelectric materials, particularly the innovative designs of SnSe and SnTe, holds promise for improving energy conversion systems and reducing environmental impacts. The impact of his research extends into sustainable energy solutions, where his materials can lead to better energy storage and efficiency in power generation. His work influences the global scientific community, helping shape the future of energy technologies.

Legacy and Future Contributions 🌱

As a leader in the field of thermoelectrics, Prof. Tang's legacy will be defined by his groundbreaking research in material science. His continued work on improving the performance of thermoelectric materials positions him to make significant contributions to energy efficiency and sustainability in the future. With ongoing projects funded by prestigious institutions, Prof. Tang is poised to remain at the forefront of his field, influencing future generations of scientists and engineers. His work will continue to have a lasting impact on energy technologies, offering new solutions to the world's growing energy demands.

 

Publications


  • 📄 Interplay between metavalent bonds and dopant orbitals enables the design of SnTe thermoelectrics
    Authors: Tang, G., Liu, Y., Yang, X., Yu, Y., Wuttig, M.
    Journal: Nature Communications, Year: 2024

  • 📄 Divacancy and resonance level enables high thermoelectric performance in n-type SnSe polycrystals
    Authors: Gong, Y., Dou, W., Lu, B., Wu, H., Tang, G.
    Journal: Nature Communications, Year: 2024

  • 📄 Improving thermoelectric properties in double half-Heusler M8FexNi8−xSb8 (M = TiZrHfNb)-InSb compounds via synergistic multiscale defects and high-mobility carrier injection
    Authors: Wang, C., Cong, D., Tang, G., Zhou, X., Li, J.
    Journal: Chemical Engineering Journal, Year: 2024

  • 📄 High wide-temperature-range thermoelectric performance in GeTe through hetero-nanostructuring
    Authors: Zhang, Q., Ying, P., Farrukh, A., Chen, G., Tang, G.
    Journal: Acta Materialia, Year: 2024

  • 📄 CdSe Quantum Dots Enable High Thermoelectric Performance in Solution-Processed Polycrystalline SnSe
    Authors: Dou, W., Gong, Y., Huang, X., Ying, P., Tang, G.
    Journal: Small, Year: 2024

 

Lin Ge | Materials Science | Best Researcher Award

Prof. Lin Ge | Materials Science | Best Researcher Award

Nanjing Tech University | China

Author Profile

Orcid

🌱 Early Academic Pursuits

Dr. Lin Ge’s academic journey began at Nanjing Tech University, where he obtained his degrees, showcasing his early dedication to materials science. His academic excellence and curiosity led him to pursue advanced studies in materials engineering, with a specific focus on Solid Oxide Cells. During his time as a visiting scholar and postdoctoral researcher at Nanyang Technological University, he broadened his expertise, gaining valuable international exposure and engaging with advanced research methodologies.

🔬 Professional Endeavors

Currently, Dr. Lin Ge serves as an associate professor and the subdean of the College of Materials Science and Engineering at Nanjing Tech University. In this role, he not only advances his research but also mentors emerging engineers and scientists. He actively participates in significant projects funded by prestigious foundations, including the National Natural Science Foundation of China, the Natural Science Foundation of Jiangsu Province, and the China Postdoctoral Science Foundations, underscoring his contributions to advancing materials science.

📚 Contributions and Research Focus

Dr. Ge’s research primarily centers around Solid Oxide Cells, a field where he has authored over 60 scientific publications. His expertise in this area has positioned him as a notable contributor to the literature on materials engineering and energy storage. As a longstanding reviewer for various scientific journals, he continues to shape research standards in his field. Dr. Ge is also an active member of the Composite Material Society of Jiangsu Province, contributing to the materials science community on a broader scale.

🏆 Accolades and Recognition

Dr. Lin Ge’s work has earned him recognition within both academia and the scientific community. His funded research projects and extensive publications underscore his contributions, and his role as an annual reviewer for renowned journals, including Applied Catalysis B: Environmental and the Journal of Power Sources, is a testament to his respected expertise.

🌍 Impact and Influence

Through his research on Solid Oxide Cells, Dr. Ge has significantly impacted energy storage and environmental sustainability. His contributions to materials science extend beyond his publications, as his work on Solid Oxide Cells holds potential for future technological advancements in clean energy solutions. His influence is also reflected in his mentorship of students and peers, fostering an environment of innovation and intellectual curiosity.

🌟 Legacy and Future Contributions

Dr. Ge’s dedication to materials science positions him as a forward-thinking leader in the field, paving the way for innovations in sustainable energy and advanced ceramics. As he continues to contribute through his research, mentorship, and publications, Dr. Ge is poised to leave a lasting legacy, inspiring future generations of scientists and engineers to explore the vast potential of materials science and its applications in addressing global challenges.

 

Publications


📄 Superior Durability and Activity of a Benchmark Triple‐Conducting Cathode by Tuning Thermo‐Mechanical Compatibility for Protonic Ceramic Fuel Cells

  • Journal: Advanced Functional Materials
  • Year: 2024
  • Authors: Zhexiang Yu, Lin Ge, Qing Ni, Yifeng Zheng, Han Chen, Xingkai Zhou, Yaowei Mi, Bochang Shi, Xiaole Yu, Bangze Wu, et al.

📄 Solid Oxide Electrolyzer Positive Electrodes with a Novel Microstructure Show Unprecedented Stability at High Current Densities

  • Journal: Journal of Materials Chemistry A
  • Year: 2023
  • Authors: Qing Ni, Yu Li, Zongchao Zhu, Zhexiang Yu, Dong Xu, Xiaoming Hua, Yi Zhen, Lin Ge, Lei Bi