Yana Mourdjeva | Engineering | Best Researcher Award

Mrs. Yana Mourdjeva | Engineering | Best Researcher Award

Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre – BAS | Bulgaria

Mrs. Yana Mourdjeva is a distinguished researcher at the Institute of Metal Science, Equipment, and Technologies with the Center for Hydro- and Aerodynamics “Acad. A. Balevski” at the Bulgarian Academy of Sciences (IMSETHC-BAS), serving in the Laboratory of Transmission Electron Microscopy (LMTC). She holds a Master’s degree in Machine Engineering from the Technical University of Sofia and a Ph.D. in Material Science and Technology of Machine Building Materials from IMSETHC-BAS. Her research focuses on materials science, characterization of metals and alloys, transmission electron microscopy, hydrogen embrittlement, nanomaterials, and superplasticity. With an h-index of 5, she has authored 18 scientific publications, including 8 with impact factors, and her work has received 64 citations. In recent years, she has actively contributed to projects funded by the Bulgarian National Science Fund and the EU Next Generation initiative, exploring advanced aluminum composites, amorphous alloys, and hydrogen embrittlement mechanisms. She has participated in international Erasmus collaborations at the Metallurgy Institute in Krakow, Poland, further enhancing her expertise in materials characterization. Her research outcomes have appeared in reputed journals such as Metals and Journal of Materials Engineering and Performance, strengthening the field’s understanding of microstructural evolution and performance of metallic materials.

Profiles : Scopus | Orcid

Featured Publications

Dyakova, V., Yanachkov, B., Valuiska, K., Mourdjeva, Y., Krastev, R., Simeonova, T., Kolev, K., Lazarova, R., & Katzarov, I. (2025). The impact of hydrogen charging time on microstructural alterations in pipeline low-carbon ferrite–pearlite steel. Metals. Multidisciplinary Digital Publishing Institute.

Lazarova, R., & Mourdjeva, Y. (2025, May 7). Microstructural explanation of the mechanical properties of Al–GNPs composites with Al₄C₃ produced by powder metallurgy method and extrusion. Journal of Information Systems Engineering and Management, 10(43s).

Lazarova, R., Anestiev, L., Mourdjeva, Y., Valuiska, K., & Petkov, V. (2025, March 5). Microstructural evolution, strengthening mechanisms, and fracture behavior of aluminum composites reinforced with graphene nanoplatelets and in situ–formed nano-carbides. Metals, 15(3).

Dyakova, V., Mourdjeva, Y., Simeonova, T., Krastev, R., Atanasov, I., Drenchev, L., & Kavardjikov, V. (2024). Microstructural analysis of 40X steel after strain-controlled fatigue. Journal of Theoretical and Applied Mechanics (Bulgaria).

Yanachkov, B., Mourdjeva, Y., Valuiska, K., Dyakova, V., Kolev, K., Kaleicheva, J., Lazarova, R., & Katzarov, I. (2024). Effect of hydrogen content on the microstructure, mechanical properties, and fracture mechanism of low-carbon lath martensite steel. Metals, 14.

Dyakova, V., Cherneva, S., Mourdjeva, Y., & Kostova, Y. (2024, June 30). Influence of the content of Ni as minority alloying element on the microstructure and mechanical properties of amorphous and ultrafine crystalline Al–Cu–Mg–Ni alloys. Proceedings of the Bulgarian Academy of Sciences.

Dyakova, V., Mourdjeva, Y., Spasova, H., Stefanov, G., & Kostova, Y. (2023). Effect of Cu as minority alloying element on glass forming ability and crystallization behavior of rapidly solidified Al–Si–Ni ribbons. Vide. Tehnologija. Resursi – Environment, Technology, Resources.

Dyakova, V., Mourdjeva, Y., Marinkov, N., Stefanov, G., Kostova, Y., & Gyurov, S. (2023). Effect of Ni as minority alloying element on glass forming ability and crystallization behavior of rapidly solidified Al–Cu–Mg–Ni ribbons. Journal of Chemical Technology and Metallurgy, 58(5).

Kolev, M., Lazarova, R., Petkov, V., Mourdjeva, Y., & Nihtianova, D. (2023). Investigating the effects of graphene nanoplatelets and Al₄C₃ on the tribological performance of aluminum-based nanocomposites. Metals, 13.

Mourdjeva, Y., Karashanova, D., Nihtianova, D., & Lazarova, R. (2023). Microstructural characteristics of Al₄C₃ phase and the interfaces in Al/graphene nanoplatelet composites and their effect on the mechanical properties. Journal of Materials Engineering and Performance.

Lazarova, R., Mourdjeva, Y., Nihtianova, D., Stefanov, G., & Petkov, V. (2022). Fabrication and characterization of aluminum–graphene nanoplatelets–nano-sized Al₄C₃ composite. Metals, 12(12).

Dyakova, V., Stefanov, G., Penkov, I., Kovacheva, D., Marinkov, N., Mourdjeva, Y., & Gyurov, S. (2022). Influence of Zn on glass forming ability and crystallization behaviour of rapidly solidified Al–Cu–Mg (Zn) alloys. Journal of Chemical Technology and Metallurgy, 57(3).

Dyakova, V., Stefanov, G., Kovacheva, D., Mourdjeva, Y., Marinkov, N., Penkov, I., & Georgiev, J. (2022). Influence of Zr and Zn as minority alloying elements on glass forming ability and crystallization behavior of rapidly solidified Al–Cu–Mg ribbons. AIP Conference Proceedings, 2449.

Lazarova, R., Mourdjeva, Y., Petkov, V., Marinov, M., Dimitrova, R., & Shuleva, D. (2022, December). Microstructure and mechanical properties of aluminum–graphene composites produced by powder metallurgical method. Journal of Materials Engineering and Performance, 31(12).

Girma Sisay Wolde | Materials Science | Best Research Article Award

Dr. Girma Sisay Wolde | Materials Science | Best Research Article Award

National Chung Hsing University | Taiwan

Dr. Girma Sisay Wolde is a distinguished researcher in Materials Science and Engineering with a strong record of scientific contributions, evidenced by 156 citations across 145 documents, 9 key publications, and an h-index of 7. His academic journey includes a Ph.D. in Materials Science and Engineering from National Taiwan University of Science and Technology, an M.Sc. in Inorganic Chemistry from Addis Ababa University, and a B.Sc. in Applied Chemistry from Arba Minch University. Professionally, he has held roles as a postdoctoral researcher at National Chung Hsing University, assistant professor at Bule Hora University, and graduate research assistant at NTUST. His research focuses on photocatalysis, electrocatalysis, and the development of advanced materials for environmental and energy applications, including solar-light-driven ternary MgO/TiO₂/g-C₃N₄ heterojunctions, Zn-Ce-Ga trimetal oxysulfides, and defect-engineered Bi2Mn4O10/BiOI₁₋ₓBrₓ nanosheets. He has contributed to high-impact journals such as Chemosphere, Chemical Engineering Journal, Applied Surface Science, and ACS Applied Energy Materials, with work covering pollutant reduction, nitrogen fixation, and hydrogen evolution. In addition to his research, he has mentored M.Sc. students and guided experiments for high school students, fostering the next generation of scientists. Dr. Wolde’s innovative contributions to materials chemistry, coupled with his extensive publication and citation record, demonstrate both academic excellence and a strong potential for advancing sustainable materials and catalytic technologies.

Profiles : Scopus | Orcid

Featured Publications

Gemeda, T. N., Kuo, D.-H., Ha, Q. N., Gultom, N. S., & Wolde, G. S. (2024). 84.0% energy-efficient nitrate conversion by a defective (Fe, Cu, Ni)₂O₃ electrocatalyst. Journal of Materials Chemistry A.

Huang, T.-C., Chen, X., Wolde, G. S., & Kuo, D.-H. (2024). Photocatalytic hydrogen production over highly oxygen deficient Cu-doped TiO₂ and its composites: Insights of kinetic reaction micromechanisms. Separation and Purification Technology.

Gemeda, T. N., Kuo, D.-H., Wolde, G. S., & Gultom, N. S. (2023). In situ grown (Fe, Mn, Ga)₃O₄₋ₓ spinel/(Mn, Fe)₂O₃₋ᵧ bixbyite dual-phase electrocatalyst for preeminent nitrogen reduction to ammonia: A step toward the NH₃ economy. ACS Applied Energy Materials.

Urgesa, M. H., Wolde, G. S., & Kuo, D.-H. (2023). One-step hydrothermal synthesis of novel flower-like Bi₂Mn₄O₁₀ anchored on BiOI₁₋ₓBrₓ nanosheets for efficient photocatalytic nitrogen fixation. Journal of Alloys and Compounds.

Wolde, G. S., Kuo, D.-H., Urgesa, M. H., & Gemeda, T. N. (2023). Photocatalytic oxidation of benzyl alcohol coupled with p-dinitrobenzene reduction over poly(o-phenylenediamine) nanowires-decorated Gd-TiO₂ nanorods. Chemical Engineering Journal.

Urgesa, M. H., Wolde, G. S., & Kuo, D.-H. (2023). Plasmonic silver nanoparticle-deposited n-Bi₂S₃/p-MnOS diode-type catalyst for enhanced photocatalytic nitrogen fixation: Introducing the defective p-MnOS. Chemical Engineering Journal.

Wolde, G. S., Kuo, D.-H., & Abdullah, H. (2022). Solar-light-driven ternary MgO/TiO₂/g-C₃N₄ heterojunction photocatalyst with surface defects for dinitrobenzene pollutant reduction. Chemosphere.

Sisay, G., Abdullah, H., Kuo, D.-H., Lakew, W., Shuwanto, H., & Fentie, S. (2021). Zn-Ce-Ga trimetal oxysulfide as a dual-functional catalyst: Hydrogen evolution and hydrogenation reactions in a mild condition. Applied Surface Science.

Tadesse, S. F., Kuo, D.-H., Kebede, W. L., & Wolde, G. S. (2021). Visible light driven Nd₂O₃/Mo(S,O)₃₋ₓ·0.34H₂O heterojunction for enhanced photocatalytic degradation of organic pollutants. Applied Surface Science.

Leila Celin Nascimento | Engineering | Women Research Award

Dr. Leila Celin Nascimento | Engineering | Women Research Award

Instituto Federal do Espirito Santo | Brazil

Dr. Leila Celin Nascimento is a distinguished researcher in Civil and Environmental Engineering, with a Ph.D. in Materials Engineering from Universidade Estadual Norte Fluminense (2024), a Master’s degree in Environmental Engineering from Universidade Federal do Espírito Santo (2002), and a Bachelor’s degree in Civil Engineering from the same institution (2000). She currently serves as a professor in technical and technological education at Instituto Federal do Espírito Santo (IFES – Campus Vitória). Her research expertise spans Civil Engineering, with strong emphasis on Environmental and Materials Engineering, focusing on coating mortars, solid waste management, construction materials, and construction technology. She has contributed to four scholarly publications, with a total of 37 citations and an h-index of 2. Dr. Nascimento has led and participated in research projects evaluating solid waste management infrastructure and analyzing pathological manifestations in buildings, reflecting her applied research impact. In addition to research, she has extensive teaching experience in water resources, environmental planning, geology, water supply, and solid waste, as well as professional development in scientific writing, gamification in education, and hybrid learning methods. Her work demonstrates a commitment to advancing sustainable construction practices, integrating technical education with environmental and materials research, and mentoring students in applied scientific inquiry, making her a significant contributor to the fields of civil and environmental engineering.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

Nascimento, L. C., Baptista Junior, G., Xavier, G. C., Azevedo, A. R. G. de, Monteiro, S. N., & Alledi, C. T. D. B. (2025). Performance of wood bottom ash as a replacement for Portland cement in coating mortars. Journal of Materials Research and Technology.

Baptista Junior, G., Nascimento, L. C., Xavier, G. C., Monteiro, S. N., Vieira, C. M. F., Marvila, M. T., & Alledi, C. T. D. B. (2024). Durability for coating mortars: Review of methodologies. Journal of Materials Research and Technology.

Nascimento, L. C., Baptista Junior, G., Xavier, G. C., Monteiro, S. N., Vieira, C. M. F., Azevedo, A. R. G. de, & Alexandre, J. (2023). Use of wood bottom ash in cementitious materials: A review. Journal of Materials Research and Technology.

Nascimento, L. C., Baptista Junior, G., Nascimento, L. C., & Santos, G. F. (2021). Manifestações patológicas causadas por sistemas de climatização no IFES Campus Vitória. Revista Ifes Ciência, 7(1).

Jie Wang | Materials Science | Best Researcher Award

Prof. Jie Wang | Materials Science | Best Researcher Award

Qingdao Agricultural University | China

Prof. Jie Wang is an accomplished scholar in materials science, specializing in the design and construction of functional materials with applications in renewable energy, electrocatalysis, and advanced energy storage systems. He has authored over 100 publications in leading international journals, which have collectively garnered more than 6,580 citations, reflecting his significant research impact with an impressive h-index of 47. His research contributions span electrocatalysis for zinc-air and lithium-ion batteries, oxygen evolution and reduction reactions, water splitting, and the rational design of nanostructured materials such as transition metal sulfides, perovskites, and metal-organic frameworks. Prof. Wang has undertaken collaborative research at globally recognized institutions and serves as a corresponding or first author on numerous high-impact studies published in journals such as Advanced Materials, Advanced Functional Materials, Journal of Materials Chemistry A, and Energy Storage Materials. His work has been recognized through prestigious awards including multiple provincial and national-level prizes in natural science and outstanding research achievements. Alongside his publications, he has successfully led several major national and regional research grants focused on energy storage, electrocatalysis, and sustainable materials development. Through his extensive scholarly output, mentorship, and innovative research directions, Prof. Jie Wang continues to make influential contributions to advancing materials science and energy technologies.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

Author, A. A., Author, B. B., & Author, C. C. (2025). Porous carbon with predominant graphitic nitrogen and abundant defects mediated by reductive molten salt enables boosted sulfur conversion for room-temperature sodium-sulfur batteries. Chemical Engineering Journal.

Author, A. A., Author, B. B., & Author, C. C. (2025). Enhancing oxygen evolution electrocatalysis in heazlewoodite: Unveiling the critical role of entropy levels and surface reconstruction. Advanced Materials.

Author, A. A., Author, B. B., & Author, C. C. (2025). Optimizing aqueous zinc-sulfur battery performance via regulating acetonitrile co-solvents and carbon nanotube carriers. ChemSusChem.

Author, A. A., Author, B. B., & Author, C. C. (2025). Homogeneous bismuth dopants regulate cerium oxide structure to boost hydrogen peroxide electrosynthesis via two-electron oxygen reduction. Inorganic Chemistry Frontiers.

Author, A. A., Author, B. B., & Author, C. C. (2025). Promoting effect of copper doping on LaMO₃ (M = Mn, Fe, Co, Ni) perovskite-supported gold catalysts for selective gas-phase ethanol oxidation. Catalysts.

Author, A. A., Author, B. B., & Author, C. C. (2025). Structural regulation of NiFe LDH under spontaneous corrosion to enhance the oxygen evolution properties. ChemSusChem.

Author, A. A., Author, B. B., & Author, C. C. (2025). Exploring the efficiency of N, N-dimethylformamide for aqueous zinc-sulfur batteries. Science China Chemistry.

Author, A. A., Author, B. B., & Author, C. C. (2024). Expediting corrosion engineering for sulfur-doped, self-supporting Ni-Fe layered dihydroxide in efficient aqueous oxygen evolution. Catalysts.

Author, A. A., Author, B. B., & Author, C. C. (2024). Rational design of electrolyte additives for improved solid electrolyte interphase formation on graphite anodes: A study of 1,3,6-hexanetrinitrile. Energies.

Author, A. A., Author, B. B., & Author, C. C. (2024). Phase modulation of nickel-tin alloys in regulating electrocatalytic nitrogen reduction properties. Rare Metals.

Sanae Zriouel | Materials Science | Women Research Award

Prof. Sanae Zriouel | Materials Science | Women Research Award

Cadi Ayyad University | Morocco

Prof. Sanae Zriouel is an accomplished physicist with a strong research footprint, boasting 18 documents, 188 citations, and an h-index of 9. Her research encompasses graphene and related materials, physics of two-dimensional nanostructures, topological insulators, chalcopyrite semiconductors, perovskite structures, mathematical physics, and quantum and statistical physics, employing advanced numerical simulations including ab-initio calculations, DFT, Green functions, Monte Carlo, and molecular dynamics. She currently serves as Associate Professor of Physics at Cadi Ayyad University, Morocco, after holding positions as Assistant Professor at Sultan Moulay Slimane University and Researcher at Mohammed V University. Prof. Zriouel has a PhD in Mathematical Physics and a Habilitation Universitaire (HDR), complemented by engineering and bachelor degrees in electro-mechanics, physical sciences, and English studies. She has been recognized with numerous awards including full membership in OWSD and multiple national and international research honors. Prof. Zriouel has supervised over 30 master’s and bachelor students, contributed extensively to academic and research committees, coordinated national and international projects, and actively participated in more than 80 conferences. Her work in quantum materials, nanostructures, and simulations has significantly advanced theoretical and applied physics, reflecting her impact in the scientific community through research, mentorship, and collaborative projects worldwide.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

Amzaoued, M., Zriouel, S., & Mabrouki, M. (2025). DFT computational modeling studies of electronic and magnetic features of transition metal doped ZnTe. Physics Open, 24, 100275.

Ahsan, J., Rather, M., Sultan, K., Zriouel, S., & Hlil, E. (2025). In-depth study of double perovskite Sr₂NiTaO₆: Structural, electronic, thermoelectric, and spintronic properties for sustainable and high-performance applications. Computational Condensed Matter, 43, e01026.

Zriouel, S., Mhirech, A., Kabouchi, B., Bahmad, L., Fadil, Z., Husain, F., & Raorane, C. (2025). Investigating thermodynamic and magnetic behavior of graphullerene-like nanostructure using Monte Carlo techniques. Philosophical Magazine, 1–14.

Saber, N., Zriouel, S., Mhirech, A., Kabouchi, B., Bahmad, L., & Fadil, Z. (2023). Magnetic properties and magnetocaloric effects of the graphullerene-like 4−(Mg₄C₆₀) nanostructure: A Monte Carlo study. Modern Physics Letters B, 38, 2350199.

Zriouel, S., & Jellal, A. (2022). Engineering quantum tunneling effect of carriers in silicene field-effect transistors. arXiv preprint arXiv:2212.06072.

Zriouel, S. (2021). Phase transitions and critical dielectric phenomena of janus transition metal oxides. Materials Science and Engineering B, 267, 115087.

Zriouel, S., et al. (2020). Effect of p−d hybridization on half-metallic properties of some diluted II−IV−V₂ chalcopyrites for spintronic applications. Physica Scripta, 95, 045809.

Zriouel, S. (2020). Phase transitions and compensation behavior of graphene-based Janus materials. Journal of Magnetism and Magnetic Materials, 493, 165711.

Taychour, B., Zriouel, S., & Drissi, B. (2018). Half-metallic ferromagnetic character in ZnXP₂ (X = Ge, Si) chalcopyrites doped with Mn. Journal of Superconductivity and Novel Magnetism, 1–7.

Saidi, S., Zriouel, S., Drissi, B., & Maaroufi, M. (2018). First principles study of electronic and optical properties of Ag₂CdSnS₄ chalcogenides for photovoltaic applications. Computational Materials Science, 152, 291–299.

Saidi, S., Zriouel, S., Drissi, B., & Maaroufi, M. (2018). A DFT study of electro-optical properties of kesterite Ag₂CdSnX₄ for photovoltaic applications. Physica E, 103, 171–179.

 

Aya Chelh | Energy | Best Researcher Award

Dr. Aya Chelh | Energy | Best Researcher Award

Mohammed V University | Morocco

Dr. Aya Chelh is a PhD candidate in Materials Science at University Mohammed V, Rabat, specializing in first-principles computational modeling with expertise in density functional theory (DFT). Her research focuses on investigating structural, electronic, optical, thermoelectric, and hydrogen storage properties of advanced materials, with applications in photovoltaics, spintronics, and sustainable energy technologies. She has contributed significantly to the field through publications in reputed journals such as International Journal of Computational Materials Science and Engineering, Journal of Physics and Chemistry of Solids, Solid State Communications, and Advanced Theory and Simulations. Her studies provide valuable insights into optoelectronic, photocatalytic, and thermodynamic behaviors of perovskites, phosphides, and doped oxides, contributing to renewable energy innovations. With presentations at national and international conferences, Dr. Chelh has actively disseminated her findings to the academic community. She has authored six peer-reviewed journal articles, garnering 25 citations, with an h-index of 3, reflecting the growing impact of her research in computational materials science. Beyond her academic achievements, she has also collaborated on interdisciplinary projects bridging theoretical modeling with experimental synthesis and characterization. Through her innovative work, Dr. Chelh continues to advance sustainable materials design, supporting the global shift toward renewable energy and environmentally friendly technologies.

Profiles : Orcid | Google Scholar

Featured Publications

"DFT investigation of the structural, optoelectronic, thermoelectric, and thermodynamic properties of metal phosphides MP2 (M= Co, Rh, and Ir)"

"First-principles calculations to investigate photovoltaic, photocatalytic, and spintronic properties of Fe-doped and alloyed MgSiO3 perovskite"

"Ab-initio study of the structural, electronic, optical, and thermoelectric properties of chalcogenide-doped Sr2UZnO6"

"First-Principles Study of the Stability, Physical Properties, and Molecular Dynamics in KSrZH6 (Z= Rh, Ir) for Hydrogen Storage Applications"

"Impact of complete sulfur substitution by selenium and tellurium on the structural, electronic, optical, and photocatalytic properties of CaAl2S4: A DFT investigation"

"Compressive strain effects on the photocatalytic and optoelectronic properties of CsInBr3 for efficient hydrogen production: A DFT study"

Chanh Vuong-Dinh | Engineering | Best Researcher Award

Dr. Chanh Vuong-Dinh | Engineering | Best Researcher Award

Duy Tan university | Vietnam

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Chanh Vuong-Dinh’s academic journey began with a strong foundation in engineering mechanics at Vietnam National University, where he developed a keen interest in the fundamentals of structural behavior and material mechanics. His early studies shaped his analytical approach and laid the groundwork for advanced exploration in computational engineering. With encouragement from academic mentors and recognition for his academic excellence, he pursued higher studies abroad to refine his expertise in civil and environmental engineering.

Professional Endeavors

Dr. Vuong-Dinh has combined industry practice and academic scholarship to enrich his professional career. Before entering academia, he worked as a pipeline design engineer at Petro Vietnam Engineering and as a pressure vessel design engineer at Hitachi Zosen Vietnam, where he gained practical experience in structural integrity and mechanical design. Transitioning into academia, he joined the Duy Tan Research Institute for Computational Engineering as a lecturer and researcher, where he continues to contribute to both teaching and research with a focus on computational mechanics.

Contributions and Research Focus

At the core of his research lies the advancement of computational modeling for complex engineering problems. His work specializes in finite element analysis, fracture mechanics, damage mechanics, and biomechanics, with particular emphasis on quasi-brittle materials, composites, and soft tissues. He has made significant contributions to the development of smoothing gradient damage models, enabling more accurate predictions of fracture behavior and failure mechanisms. His research extends to numerical methods for engineering, addressing both theoretical modeling and applied problem-solving.

Accolades and Recognition

Throughout his academic career, Dr. Vuong-Dinh has received several prestigious honors that reflect his scholarly dedication. His studies in Japan were supported by the Japanese Government MEXT Scholarship, a testament to his academic potential and research capability. Earlier in his academic path, he was awarded the Encouragement Scholarship at Vietnam National University for consistent academic excellence. These recognitions highlight his commitment to advancing civil engineering research at both national and international levels.

Impact and Influence

The influence of Dr. Vuong-Dinh’s research can be seen in the engineering community through his numerous publications in leading international journals such as Engineering Fracture Mechanics, Theoretical and Applied Fracture Mechanics, Composite Structures, and Computers & Structures. His contributions have advanced the understanding of fracture phenomena in brittle and composite materials, influencing both theoretical frameworks and engineering applications. Furthermore, his participation in global conferences and workshops has allowed him to share his expertise widely and engage in collaborative discussions with peers worldwide.

Legacy and Future Contributions

Dr. Vuong-Dinh’s scholarly output demonstrates a balance between theoretical innovation and practical application. By developing advanced computational models for structural analysis and damage prediction, his research provides essential tools for engineers addressing challenges in infrastructure, biomechanics, and material sciences. Moving forward, his focus on interdisciplinary applications, including biomechanics and soft tissue modeling, promises to expand the scope of his impact. His role as an academic mentor ensures the cultivation of future researchers who will further these developments.

Publications


Enhanced local damage model with polygonal elements for transient thermoelastic fracture analysis
Authors: Du Dinh Nguyen, Nguyen Hoang Le, Chanh Dinh Vuong, Minh Ngoc Nguyen, Tinh Quoc Bui
Journal: Mechanics of Materials
Publisher: Elsevier
Year: 2025


Multi-scale concurrent topology optimization of lattice structures with single type of composite micro-structure subjected to design-dependent self-weight loads
Authors: Minh Ngoc Nguyen, Duy Vo, Chanh Dinh Vuong, Tinh Quoc Bui
Journal: Computers & Structures
Publisher: Elsevier
Year: 2025


Transgranular and intergranular fracture in polycrystalline materials with the anisotropic smoothing gradient damage model
Authors: Chanh Dinh Vuong, Tinh Quoc Bui
Journal: Meccanica
Publisher: Springer
Year: 2025


Simulation of failure in fiber-reinforced composites and polycrystalline materials: A novel anisotropic local damage approach
Authors: Quan Nhu Tran, Minh Ngoc Nguyen, Chanh Dinh Vuong, Tinh Quoc Bui
Journal: Composite Structures
Publisher: Elsevier
Year: 2025


An enhanced local damage model for 2D and 3D quasi-brittle fracture: ABAQUS-FEM implementation and comparative study on the effect of equivalent strains
Authors: Quan Nhu Tran, Minh Ngoc Nguyen, Chanh Dinh Vuong, Nhung Nguyen, Tinh Quoc Bui
Journal: Advances in Engineering Software
Publisher: Elsevier
Year: 2025


Conclusion

Dr. Chanh Vuong-Dinh has built a distinguished career marked by academic rigor, professional versatility, and impactful research in computational mechanics. His journey from early studies in Vietnam to advanced research in Japan and current academic contributions at Duy Tan University reflects a dedication to bridging theory and practice in engineering. With his continued pursuit of innovative methods for understanding and solving complex structural problems, he stands as a promising leader in the field, contributing to both the advancement of scientific knowledge and the training of future generations of engineers.

Ikram Moulay | Chemical Engineering | Editorial Board Member

Ms. Ikram Moulay | Chemical Engineering | Editorial Board Member

Korea Advanced Institute of Science & Technology | South Korea

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Ms. Ikram Moulay began her academic journey with a deep commitment to chemical and environmental engineering. From her undergraduate studies in process engineering to her master’s research in chemical engineering, she consistently demonstrated exceptional performance, graduating with distinction. Her academic foundation laid the groundwork for an intensive exploration of environmental remediation, adsorption techniques, and the development of sustainable engineering solutions. This early phase not only shaped her technical expertise but also instilled a strong research-driven mindset oriented toward solving pressing global challenges.

Professional Endeavors

Her professional journey reflects a progressive engagement with leading institutions and industries across different countries. As a research assistant at Abdelhamid Ibn Badis University, she gained expertise in environmental remediation and material valorization. Later, she joined Yonsei University, where she advanced her work in carbon capture, utilization, and storage technologies. At KAIST, she expanded her research into simultaneous NOx and CO2 capture, modeling pilot-scale systems, and exploring industrial applications. Alongside academic roles, her internship at SONATRACH enhanced her industrial exposure, providing practical knowledge of large-scale process engineering operations and technologies.

Contributions and Research Focus

Ms. Moulay’s research is centered on energy, environment, and sustainability, with a special emphasis on carbon capture and utilization strategies. She has worked extensively on designing novel sorbents from industrial waste, creating pathways for efficient CO2 absorption, and transforming emissions into high-value products such as fertilizers and carbonates. Her contributions extend to crystallization kinetics, process modeling, and techno-economic assessments of pilot plants. She has also published impactful papers on sustainable material synthesis and CCUS technologies in leading journals, bridging theoretical research with real-world applications.

Accolades and Recognition

Her outstanding academic and research contributions have been recognized with numerous scholarships and awards. She has received multiple global scholarships for her excellent academic performance and special recognition for her presentations at international conferences on greenhouse gas innovation projects. Prestigious scholarships from environmental foundations further highlight her dedication to advancing sustainable technologies. These recognitions reflect both her academic excellence and her growing influence as a young researcher in energy and environmental engineering.

Impact and Influence

Ms. Moulay’s work has had significant influence on both academic and industrial domains. By developing sustainable CO2 capture technologies and valorizing industrial residues, she contributes directly to global efforts in climate change mitigation. Her innovative methods for producing high-purity calcium carbonate and other value-added products offer practical solutions for reducing emissions while supporting circular economy principles. As a mentor and teaching assistant, she has also influenced students and young researchers, sharing her expertise in laboratory practices and fostering a culture of sustainability-focused engineering research.

Legacy and Future Contributions

Her legacy lies in her ability to bridge science, technology, and sustainability in ways that address some of the world’s most pressing environmental challenges. With ongoing doctoral research and international collaborations, she is set to contribute further to the advancement of carbon capture, sustainable material design, and industrial-scale environmental technologies. Her future endeavors are expected to focus on expanding CCUS systems, developing eco-friendly industrial processes, and mentoring the next generation of engineers committed to building a sustainable future.

Publications


Article: Sustainable Approaches to NOx Emissions: Capture and Utilization Technologies
Authors: Ikram Moulay; Kyumin Jang
Journal: Next Energy
Year: 2025


Article: Experimental and Integrated Computational Study on CCUS Technology Utilizing Desalinated Brine
Authors: Jinwon Park; Won Yong Choi; Kyumin Jang; Sungsoo Lee; Eunsil Kim; Ikram Moulay; Jiwon Myung; Seojin Oh; Yunsung Yoo; Dongwoo Kang et al.
Journal: Preprint
Year: 2024


Article: Strong Acid-Mediated Ca2+ Extraction–CO2 Mineralization Process for CO2 Absorption and Nano-Sized CaCO3 Production from Cement Kiln Dust: Simultaneous Treatment of CO2 and Alkaline Wastewater
Authors: Kyumin Jang; Won Yong Choi; Ikram Moulay; Dongwook Lee; Jinwon Park
Journal: Journal of Environmental Chemical Engineering
Year: 2023


Article: Synthesis of Nano-Sized Calcium Carbonates Employing Molecular Effect on CO2 Conversion via Biodegradable Chelating-System
Authors: Moulay, Ikram; Park, Jinwon; Yoo, Yunsung
Journal: Chemical Engineering Journal
Year: 2023


Conclusion

Ms. Ikram Moulay stands as a promising researcher whose academic brilliance, professional achievements, and impactful contributions in energy and environmental engineering position her as a leader in sustainable technologies. Through her pioneering research, recognized excellence, and dedication to both innovation and teaching, she embodies the qualities of a researcher whose work transcends academia to make a meaningful impact on society and the environment.

Kaveh Kolahgar Azari | Materials Science | Best Researcher Award

Mr. Kaveh Kolahgar Azari | Materials Science | Best Researcher Award

University of Seville | Spain

Author Profile

Google Scholar

Early Academic Pursuits

From the beginning of his academic journey, Mr. Kaveh Kolahgar Azari demonstrated exceptional aptitude for materials engineering, excelling in both composite materials and metallurgy. His formal studies established a strong foundation in advanced material science, with a particular focus on composites and coatings. His early theses in hybrid epoxy composites and layered nanocomposites revealed not only his technical precision but also his ability to connect theoretical principles with industrial applications. His academic training combined with international research experiences prepared him for a career that bridges innovation and real-world impact.

Professional Endeavors

Mr. Azari’s professional pathway reflects a seamless blend of teaching, research, and industrial application. He has served as a research assistant professor, guiding projects in casting, heat treatment, and composite materials. His work at leading research centers enabled him to contribute to groundbreaking projects on superalloys, ceramic crucibles, and advanced coatings. Alongside research, he has shared his expertise with students through teaching courses on welding and materials processing, ensuring that future generations of engineers inherit both technical rigor and innovative thinking.

Contributions and Research Focus

His research contributions span a wide range of themes central to materials science. Mr. Azari has explored the mechanical, thermal, and corrosion properties of composites, with an emphasis on ceramic coatings and nanostructured materials. His studies on spark plasma sintering techniques for yttria-stabilized zirconia coatings opened pathways for improved high-temperature applications. He has also worked on radar-absorbing nanocomposites, corrosion-resistant coatings, and bio-inspired hybrid composites. These works underline his deep commitment to solving complex challenges in aerospace, defense, and energy sectors through advanced materials research.

Accolades and Recognition

The quality and depth of Mr. Azari’s work have earned him wide recognition. He has been honored as a top researcher and inventor at both national and institutional levels. His inventions in composite design and hybrid materials have been recognized by elite scientific bodies, reflecting his capacity for innovation. Prestigious awards for research excellence, innovation, and academic performance further establish his reputation as a leading figure in his field. His success is not only measured by titles but by the respect he commands among peers for his contributions to advancing material technologies.

Impact and Influence

Mr. Azari’s influence extends beyond publications and patents into practical industrial advancements. His collaborative research has enhanced the production and performance of superalloys, thermal barriers, and advanced composites. His innovations in fracture toughness, hybrid epoxy designs, and high-performance ceramics have provided tangible benefits to aerospace and manufacturing industries. Moreover, his participation in national and international conferences highlights his role in shaping scholarly discussions and mentoring young researchers.

Legacy and Future Contributions

Looking ahead, Mr. Azari is poised to leave a lasting legacy in the field of advanced materials. His body of work already serves as a cornerstone for research in composites and coatings, while his collaborative projects promise to inspire future explorations in nanomaterials and energy-efficient technologies. His ongoing research in plasma-catalytic processes, cloud seeding materials, and sustainable composites reflects his forward-looking vision of science as a solution to global challenges. His legacy will be defined not only by scientific discoveries but also by his dedication to building bridges between academia, industry, and innovation.

Publications


Enhancement of High Temperature Properties and Adhesion of Yttria-Stabilized Zirconia Thermal Barrier Coating on Inconel 713lc Superalloy Using Spark Plasma Sintering Method

    • Authors: Kaveh Kolahgar Azari, Ali Alizadeh, Hossein Momeni, Ángela Gallardo López

    • Journal: Surface and Coatings Technology

    • Year:  2025


Optimization of Microhardness in Nanostructured Thermal Barrier Coatings Using Spark Plasma Sintering (SPS) and Taguchi Design

    • Authors: Kaveh Kolahgar Azari, Ali Alizadeh, Hossein Momeni, Angela Maria Gallardo Lopez

    • Journal: Advanced Ceramics Progress (ACERP)

    • Year:  2024


Investigating the Phenomenon of Flutter, Mechanical and Microstructural Properties of Layered Composite of Aluminum Sheet with an Epoxy Matrix Reinforced with Carbon Fibers

    • Authors: Kaveh Kolahgar Azari, Amir Hossein Sayadi Kelemi, Ali Alizadeh, Hamid Omidvar

    • Journal: Advanced Ceramics Progress (ACERP)

    • Year:  2023


An Investigation on Dynamical and Mechanical Properties of Hybrid Composite of Epoxy Matrix Reinforced with S-glass Fiber and Aluminum Sheet

    • Authors: K. Kolahgar Azari, A. Alizadeh, H. Omidvar, A. Sayadi Kelemi

    • Journal: Journal of Environmental Friendly Materials (Scientific Research)

    • Year:  2023


Investigating Research on Improving Oxidation Resistance and Erosion Properties of ZrB₂/SiC Composites

    • Authors: K. Kolahgar Azari, A. Alizadeh, A. Sayadi

    • Journal: Journal of Environmental Friendly Materials (Scientific Research)

    • Year: 2023


Conclusion

Mr. Kaveh Kolahgar Azari exemplifies the qualities of a researcher whose contributions resonate across both academic and industrial landscapes. His academic brilliance, innovative research, and commitment to advancing material technologies position him as a leader in his field. Through his sustained efforts, he continues to enrich the scientific community while addressing pressing global challenges. His journey reflects not just personal success but a broader mission to transform research into meaningful societal impact.

Nikhil Y G | Chemistry | Best Researcher Award

Mr. Nikhil Y G | Chemistry | Best Researcher Award

Maharaja Institute of Technology Mysore | India

Author Profile

Orcid

Google Scholar

Early Academic Pursuits

Mr. Nikhil Y G laid the foundation of his scientific career with a strong focus on chemistry. Beginning with a bachelor’s degree in chemistry, physics, and mathematics, he developed a deep interest in the experimental and analytical aspects of science. His academic journey progressed with a master’s degree in general chemistry, which honed his understanding of chemical synthesis, analytical techniques, and experimental validation. This strong academic base eventually led him to pursue doctoral research in analytical chemistry, where he deepened his expertise in material science, nanotechnology, and bioanalytical studies.

Professional Endeavors

His career trajectory demonstrates a balance of both research and teaching. With several years of teaching experience at reputed institutions, he contributed to shaping young minds in chemistry and related fields. Alongside teaching, his doctoral research at Visvesvaraya Technological University and Maharaja Institute of Technology Mysuru allowed him to explore frontier areas such as nanoparticle synthesis, enzyme-mimicking behavior, and battery technology. His role as a mentor and tutor also highlights his dedication to education beyond formal classrooms.

Contributions and Research Focus

The core of Mr. Nikhil’s research lies in the synthesis of metal-based and metal-doped nanoparticles and the study of their biological and catalytic properties. His investigations into the enzyme-like activities of nanomaterials have opened new pathways for bioanalytical sensing and diagnostic applications. He has developed analytical methods for enzyme detection, validated through kinetic studies, and has extended his research into emerging areas such as energy storage and battery technology. His work embodies the integration of nanoscience with healthcare and energy solutions.

Academic Publications and Research Dissemination

Mr. Nikhil has authored multiple peer-reviewed articles that reflect his contributions to nanotechnology, bio-catalysis, and analytical chemistry. His publications include studies on vanadium oxide nanozymes as glucose sensors, tungsten oxide nanoparticles mimicking peroxidase activity, and copper oxide nanomaterials with biomedical potential. Additionally, his collaborative work on spectrophotometric methods for hemoglobin detection and hydrogen peroxide quantification demonstrates his versatility in applied analytical chemistry. His manuscripts under review further indicate his continuing momentum in impactful research.

Accolades and Recognition

His scholarly efforts have been acknowledged through acceptance in reputed journals such as Biochemical and Biophysical Research Communications, Nano-Structures & Nano-Objects, and Chemical Science Review and Letters. His ability to combine innovation in nanomaterial synthesis with practical applications in diagnostics and environmental monitoring has established him as a promising researcher in his field. His contributions are also recognized through collaborative work with peers and mentors, underscoring his ability to work across interdisciplinary domains.

Impact and Influence

The significance of his research lies in its dual impact on science and society. His work on nanozyme-based systems provides cost-effective and efficient alternatives to natural enzymes, with potential applications in healthcare diagnostics, environmental monitoring, and food safety. By validating these methods in real samples such as serum, water, vegetables, and milk, he bridges the gap between laboratory innovation and real-world application. His current exploration in battery technology signals his adaptability and vision to contribute to sustainable energy solutions, further extending the societal relevance of his work.

Legacy and Future Contributions

Looking ahead, Mr. Nikhil’s work holds promise in advancing the fields of nanozymes, bioanalytical chemistry, and renewable energy. His future contributions are expected to strengthen the applications of nanomaterials in medical diagnostics and green technologies. His commitment to both teaching and research ensures that his legacy will be carried forward not only through his publications and innovations but also through the students and researchers he mentors.

Publications


Article: Oxygen deficient MoO₃ nanoparticles as peroxidase substitutes, their substrate-nanozyme interactions and real time validation in human serum sample
Authors: Nikhil Y. Gangadhara, Manju B, P. Kiran Kumar, Avinash Krishnegowda, Honnur Krishna, K.S. Mahesh Lohith, Ravishankar H. Sadashivanna, Raghavendra Ravikumar
Journal: Journal of Pharmaceutical and Biomedical Analysis
Year: 2025


Article: Evaluation of peroxidase mimicking behaviour of V₂O₅ nanozymes with various morphologies and its application as glucose sensor via cascade mechanism in human serum samples
Authors: Nikhil Y. Gangadhara, Manju B, P. Kiran Kumar, Honnur Krishna, Anantharaman Shivakumar, Ravishankar H. Sadashivanna, Avinash Krishnegowda
Journal: Biochemical and Biophysical Research Communications
Year: 2025


Article: Oxalic acid capped tungsten oxide nanozyme mimicking peroxidase activity, its synthesis characterization, and kinetic data validation via spectrophotometric studies
Authors: Ravishankar H. Sadashivanna, Honnur Krishna, Anantharaman Shivakumar, Nikhil Y. Gangadhara, K.S. Mahesh Lohith, Avinash Krishnegowda
Journal: Nano-Structures & Nano-Objects
Year: 2024


Article: Analytical Determination of Hemoglobin by Spectrophotometric Method
Authors: Nikhil Y. G.
Journal:  Grenze Scientific Society Proceedings
Year: 2023


Article: Fe₃O₄ Nano Particle Catalysed Spectrophotometric Method for the Quantification of Hydrogen Peroxide using Pyrocatechol and 3-Methyl-2 Benzothiazolinehydrazone Hydrochloride: Applications in Water, Vegetables and Milk samples
Authors: Nikhil Y. G.
Journal: Chemical Science Review and Letters
Year: 2017


Conclusion

Mr. Nikhil Y G stands as an emerging researcher who has combined academic excellence, innovative research, and teaching experience to build a promising career in analytical chemistry and nanotechnology. His achievements in nanoparticle synthesis, enzyme-mimicking studies, and analytical method development highlight both his technical expertise and his vision for socially relevant science. With his expanding focus into battery technology, his contributions are poised to impact both healthcare and sustainable energy sectors, making him a valuable contributor to the scientific community and a strong candidate for recognition as a best researcher.