Kumaresan Sakthiabirami | Dentistry | Best Researcher Award

Dr. Kumaresan Sakthiabirami | Dentistry | Best Researcher Award 

Chonnam National University | South Korea

Author Profile

Scopus

Orcid

Early Academic Pursuits

Dr. Kumaresan Sakthiabirami's academic journey in dentistry began with a Bachelor of Dental Surgery (BDS) degree from Rajah Muthiah Dental College and Hospital, Annamalai University, India. Following this, she pursued advanced studies in prosthodontics at Chonnam National University, South Korea, earning a Master's degree in February 2018 and a PhD in August 2020. Her doctoral research focused on implant surface modifications and bone tissue engineering, laying a strong foundation for her future endeavors.

Professional Endeavors

Dr. Sakthiabirami has amassed significant experience in both research and clinical practice. She has worked as a Research Professor at the Biomedical Evaluation and Research Centre, School of Dentistry, Chonnam National University, from May 2022 to July 2023. Prior to this role, she was a Post-Doctoral Research Fellow at the same institution, engaging in cutting-edge research in biomaterials and 3D bioceramic printing. Additionally, she has held positions as a Research Fellow in the Department of Prosthodontics and as an Associate Dental Practitioner in India.

Contributions and Research Focus

Dr. Sakthiabirami's research has been pivotal in the fields of biomaterial development and bone tissue engineering. She has contributed to the development of bone-mimicking 3D porous hybrid zirconia scaffolds and high-strength zirconia for additive manufacturing processes. Her work on implant surface modifications and hydrogels for bone tissue engineering has been widely recognized, and she has published numerous papers on these topics. Her technical expertise includes material synthesis, characterization techniques, and fabrication methods, positioning her as a leader in dental biomaterials research.

Accolades and Recognition

Throughout her career, Dr. Sakthiabirami has received several honors and awards. Notably, she won the Excellence Poster Award from the Korean Academy of Stomatognathic Function and Occlusion in 2019 for her work on argon plasma treatment on titanium surfaces. She has also actively participated in international conferences and seminars, presenting her research at prestigious events such as the International Symposium on Surfaces and Interfaces for Biomaterials and the International Association for Dental Research (IADR).

Impact and Influence

Dr. Sakthiabirami's work has significantly impacted the field of dental research, particularly in implant dentistry and biomaterials. Her innovative approaches to 3D printing and surface modifications have enhanced the development of more effective and durable dental implants and prostheses. Her research has not only advanced academic knowledge but has also contributed to practical applications in clinical dentistry, improving patient outcomes and advancing the field of dental materials.

Legacy and Future Contributions

Looking ahead, Dr. Sakthiabirami's legacy in dental research and practice continues to grow. Her ongoing projects and collaborations are expected to yield further advancements in biomaterials and bone tissue engineering. Her commitment to integrating cutting-edge technology with clinical applications positions her to continue making significant contributions to dental science and education. As she progresses in her career, Dr. Sakthiabirami will undoubtedly remain a key figure in the ongoing evolution of dental research and technology.

 

Notable Publications

Manganese ion batteries: LiV3O8 nanorods as a robust and long-life cathode module 2023 (2)

The Impact of Particle Size and Surface Treatment of Zirconia Suspension for Photocuring Additive Manufacturing 2023 (3)

Effects of UV Absorber on Zirconia Fabricated with Digital Light Processing Additive Manufacturing 2022 (6)

Evaluation of Physical Properties of Zirconia Suspension with Added Silane Coupling Agent for Additive Manufacturing Processes 2022 (12)

Closer to nature: Recreating extracellular matrix microenvironment with 3D printing 2024

 

 

 

Rufina Zilberg | Chemistry | Best Researcher Award

Mrs. Rufina Zilberg | Chemistry | Best Researcher Award

Ufa University of Science and Technology | Russia

Author Profile

Scopus

Orcid

Early Academic Pursuits

Mrs. Rufina Zilberg commenced her academic journey by acquiring a degree in Chemistry from Bashkir State University in 2003. She continued her pursuit of knowledge, culminating in the attainment of a Candidate of Chemical Sciences and Docent degrees, signifying her dedication and expertise in the field.

Professional Endeavors

Currently serving as an Associate Professor at Ufa University of Science and Technology, Mrs. Zilberg has devoted herself to the Department of Analytical Chemistry. Throughout her career, she has contributed significantly to the realm of electroanalytical chemistry and chemically modified electrodes, particularly in the development of enantiosensors.

Contributions and Research Focus

With over 200 publications to her credit, including a monograph and two reviews, Mrs. Zilberg's research focuses on voltammetric sensors and multisensory systems. Her pioneering work revolves around the recognition of enantiomers of antiarrhythmic drugs and vital amino acids. She has extensively explored composite materials for sensor construction, such as polyarylene phthalides and chitosan with various additives, resulting in groundbreaking advancements in sensor technology.

Accolades and Recognition

Mrs. Zilberg's prolific research endeavors have garnered recognition both nationally and internationally. Her scholarly contributions have earned her a Hirsch index of 12 in Web of Science and 21 in the Russian Science Citation Index (RSCI). Additionally, under her guidance, her students have achieved notable success in prestigious competitions, such as the UMNIK competition and the Student STARTUP.

Impact and Influence

The impact of Mrs. Zilberg's work extends beyond the academic realm. Her research findings, disseminated through esteemed journals, have not only advanced scientific knowledge but also hold promise for practical applications, particularly in pharmaceutical analysis. Her innovative approaches to sensor design and her commitment to excellence have inspired countless peers and students alike.

Legacy and Future Contributions

As Mrs. Zilberg continues her scholarly journey, her legacy is one of unwavering dedication to advancing the frontiers of analytical chemistry. Her future contributions are poised to further revolutionize sensor technology, offering novel solutions to complex analytical challenges and leaving an indelible mark on the field for generations to come.

Notable Publications

Chiral Octahedral Cobalt(III) Complex Immobilized on Carboblack C as a Novel Robust and Readily Available Enantioselective Voltammetric Sensor for the Recognition of Tryptophan Enantiomers in Real Samples 2024

A Voltammetric Sensor Based on Aluminophosphate Zeolite and a Composite of Betulinic Acid with a Chitosan Polyelectrolyte Complex for the Identification and Determination of Naproxen Enantiomers 2023 (2)

 

 

 

 

Hamid Reza Lashgari | Engineering | Best Researcher Award

Dr. Hamid Reza Lashgari | Engineering | Best Researcher Award

SRG Global Asset Care | Australia

Author Profile

Scopus

Early Academic Pursuits

Dr. Hamid Reza Lashgari embarked on his academic journey by completing a degree in Metallurgy and Materials Science and Engineering from the University of Tehran in 2008. He further pursued his academic aspirations by obtaining a Materials Engineering degree from UNSW, Sydney, graduating in 2015.

Professional Endeavors

Dr. Lashgari has cultivated a distinguished career path characterized by his roles as a Metallurgist/Materials Engineer at ALS/SRG Global, a Technical Officer at UNSW School of Materials Science, and a Materials Engineer at TECHNICO, Asset Integrity Department.

Contributions and Research Focus

With over 7 years of experience, Dr. Lashgari has specialized in failure analysis of metals and alloys, welding, corrosion analysis, and advanced materials characterization techniques. His research focuses on fitness-for-service assessment, risk-based inspection studies, and mechanical testing, among other areas.

Accolades and Recognition

Dr. Lashgari's contributions have been recognized through numerous honors and awards, including tuition fee scholarships and certificates of reviewing from esteemed journals. He has also received accolades for his pioneering work in establishing the Asset Integrity Department at TECHNICO.

Impact and Influence

Dr. Lashgari's research publications, which span various prestigious journals, attest to his significant impact on the field of materials engineering. His work has contributed to advancements in failure analysis, computational modeling, and the development of innovative materials.

Legacy and Future Contributions

Through his dedication to advancing materials engineering and his commitment to excellence, Dr. Lashgari has established a legacy of impactful research and professional achievements. His future contributions are poised to further enrich the field, driving innovation and addressing critical challenges in materials science and engineering.

Notable Publications

Fitness-for-Service Assessment of a Hydrogen-Induced Crack in an Inlet Gas Separator Pressure vessel using Computational Modelling 2024

Numerical and experimental failure analysis of wind turbine blade fastener 2024

Failure Analysis of a Fractured Pallet Hook 2023

Heat treatment response of additively manufactured 17-4PH stainless steel 2023 (10)

Dry sliding wear characteristics, corrosion behavior, and hot deformation properties of eutectic Al–Si piston alloy containing Ni-rich intermetallic compounds 2022 (7)

 

 

 

Wenbing Li | Materials Science | Best Researcher Award

Assoc Prof Dr. Wenbing Li | Materials Science | Best Researcher Award

Jiangnan University | China

Author Profile

Orcid

Early Academic Pursuits

Wenbing Li embarked on his academic journey with a relentless pursuit of knowledge, earning his Ph.D. from Harbin Institute of Technology in 2019. Under the esteemed guidance of Prof. Jinsong Leng, an Academician of the Chinese Academy of Sciences, Wenbing's academic foundation was solidified. Further enhancing his expertise, he pursued joint doctoral studies at the University of Colorado at Boulder from 2017 to 2018, under the mentorship of Prof. Yifu Ding. This international exposure broadened his horizons and enriched his research perspectives.

Professional Endeavors

In 2019, Wenbing Li joined Jiangnan University, marking the inception of his professional career. As an Associate Researcher in the College of Textile Science and Engineering, he has demonstrated a commitment to excellence in research and academia.

Contributions and Research Focus

Wenbing Li specializes in Shape Memory Composites, particularly focusing on Shape Memory Polymer Composites. His research journey has delved into diverse facets, including chemical structure design, property enhancement, advanced manufacturing, and potential applications. Notably, his contributions extend beyond national borders, with numerous publications in internationally recognized journals.

Accolades and Recognition

Wenbing Li's exceptional contributions have not gone unnoticed. He has been recognized with prestigious awards, exemplifying his commitment to excellence and innovation.

Impact and Influence

With an impressive cumulative impact factor of 66.4 over the last three years, Wenbing Li's work has made a significant mark in the field of Shape Memory Polymer Composites. His research has practical implications, evident in the recently published paper on the use of near-infrared (NIR) in driving shape memory composites.

Legacy and Future Contributions

Wenbing Li's legacy lies in his dedication to advancing the understanding and applications of Shape Memory Polymers. As he continues his journey, his work is poised to shape the future of materials science, leaving an indelible mark on the academic and industrial landscape. His innovative contributions are paving the way for the next generation of researchers and professionals in the field.

Notable Publications

Poly(ethylene-co-vinyl acetate)/Fe3O4 with near-infrared light active shape memory behavior 2024

Shape memory polymer micropatterns with switchable wetting properties 2023 (1)

Ultrathin flexible electrospun EVA nanofiber composite with electrothermally-driven shape memory effect for electromagnetic interference shielding 2022 (24)

Recent advances and perspectives of shape memory polymer fibers 2022 (19)

Application and Development of Shape Memory Micro/Nano Patterns 2021 (13)

 

 

Kun Chang | Materials Science | Best Researcher Award

Dr. Kun Chang | Materials Science | Best Researcher Award

Nanjing University of Aeronautics and Astronautics | China

Author Profile

Google Scholar

Early Academic Pursuits

Dr. Kun Chang embarked on his academic journey at Zhejiang University, earning his Ph.D. in Chemistry in 2012. His commitment to excellence began during his undergraduate studies at Henan Normal University, culminating in a solid foundation for his future research endeavors.

Professional Endeavors

Dr. Chang's international exposure started with a postdoctoral research fellowship at the University of Western Ontario, Canada. Subsequently, he contributed significantly as a researcher at the National Institute for Materials Science in Japan. Currently, he holds the prestigious position of Professor at Nanjing University of Aeronautics and Astronautics, showcasing his diverse and enriching professional journey.

Contributions and Research Focus

Renowned for his expertise in materials science, Dr. Chang's research revolves around innovative composite functional nanomaterials, solar-catalytic conversion materials, and energy storage materials. His pioneering work includes material structure and interface manipulation, catalysis, and the synthesis of functional nano-composite materials. His research impact extends to the development of technologies enhancing solar utilization and energy storage.

Accolades and Recognition

Dr. Chang's stellar contributions have garnered global recognition. As an Academician of the European Academy of Sciences and a member of the Chinese Thousand Young Talents Plan, he exemplifies excellence. His inclusion in the "Six Talent Peaks" High-level Talent Program and the "Changkong Elite" Talent Program reflects his standing as a distinguished professional. Notably, his work has been acknowledged in "China's Top 100 Most Influential International Academic Papers."

Impact and Influence

With an H-index of 52 and over 13,000 citations, Dr. Chang's influence is evident in the scientific community. His over 120 SCI papers in top-tier journals attest to the significance of his contributions. His research has advanced the fields of solar catalysis, energy conversion, and materials science, leaving a lasting impact on the academic landscape.

Legacy and Future Contributions

Dr. Kun Chang's legacy is marked by transformative research in materials science. His pioneering technologies in solar utilization and energy storage are foundational. As he continues to lead projects, mentor future scholars, and innovate in materials science, Dr. Chang's legacy is poised for enduring contributions to sustainable energy and materials research.

Notable Publications

Boost of solar water splitting on SrTiO3 by designing V-ions center for localizing defect charge to suppress deep trap 2023 (2)

Mechanistic Understanding of Alkali‐Metal‐Ion Effect on Defect State in SrTiO3 During the Defect Engineering for Boosting Solar Water Splitting 2023 (7)

Understanding targeted modulation mechanism in SrTiO3 using K+ for solar water splitting 2022 (14)

La,Al-Codoped SrTiO3 as a Photocatalyst in Overall Water Splitting: Significant Surface Engineering Effects on Defect Engineering 2021 (45)

In Situ Assembly of MoSx Thin‐Film through Self‐Reduction on p‐Si for Drastic Enhancement of Photoelectrochemical Hydrogen Evolution 2020 (25)

 

Dr. Shi Hyeong KIM | Artificial Muscles | Best Researcher Award

Dr. Shi Hyeong KIM | Materials Science | Best Researcher Award

Korea Institute of Industrial Technology | South Korea

Author Profile

Google Scholar

 

Early Academic Pursuits

Shi Hyeong Kim began his academic journey at Hanyang University, where he pursued a Bachelor's degree in Biomedical Engineering, showcasing a strong interest in this interdisciplinary field. He continued his academic pursuit at the same institution, completing his Master's and Doctoral degrees in Biomedical Engineering, focusing his thesis work on the development of innovative technologies like the conductive tubular bundle for artificial muscle (for his Master's) and environmental-powered artificial muscle for energy harvesting (for his Ph.D.).

Professional Endeavors

Kim's professional journey commenced with postdoctoral positions at various renowned institutions, including Hanyang University, the Nanotech Institute at the University of Texas at Dallas, and the U.S. Army Research Lab. These roles allowed him to further expand his expertise and delve into cutting-edge research within the field of Biomedical Engineering and related areas.

Contributions and Research Focus

Throughout his career, Kim has made significant contributions, emphasizing advancements in biomedical technology, particularly in artificial muscles and energy harvesting from the environment. His research focus has been on developing innovative solutions that bridge the gap between engineering and biology, showcasing the potential for practical applications in various domains.

Accolades and Recognition

Kim's pioneering work has earned him recognition, including potentially awards, patents, or academic distinctions that acknowledge the impact of his contributions to the field of Biomedical Engineering.

Impact and Influence

His research findings and technological innovations have not only contributed to the theoretical advancements in Biomedical Engineering but also have the potential to influence diverse industries, including healthcare, robotics, and sustainable energy, by offering novel solutions and applications.

Legacy and Future Contributions

Kim's legacy is defined by his commitment to pushing the boundaries of Biomedical Engineering and interdisciplinary research. As a Senior Researcher at the Korea Institute of Industrial Technology and an Adjunct Professor at Hanyang University, his current and future contributions are likely to continue inspiring advancements and fostering the next generation of researchers and engineers in this field. Kim's academic journey, coupled with his diverse professional experiences, underscores his significant impact on the field of Biomedical Engineering and signals promising contributions to come in the intersection of engineering and biology.

Notable Publications

High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns 2014 (139)

Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk 2014 (116)

Wearable Energy Generating and Storing Textile Based on Carbon Nanotube Yarns 2020 (40)