Prof. Milena Ignatova | Chemistry | Best Researcher Award
Institute of Polymers, Bulgarian Academy of Science | Bulgaria
Prof. Milena Ignatova is a distinguished researcher at the Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences (IP-BAS). Her prolific scientific career is reflected through 56 publications, cited 2,615 times by 2,070 documents, with an impressive h-index of 27. Her work primarily focuses on the design and synthesis of functional polymer materials derived from renewable and biodegradable sources. She has made remarkable contributions in developing electrospun nanofibrous and hybrid polymer materials with antibacterial, antioxidant, and anticancer properties. Prof. Ignatova has played a leading role in national and international research projects, including one as a principal investigator funded by the National Science Fund. Her research integrates polymer chemistry, nanotechnology, and biomedical applications to create multifunctional materials with potential uses in drug delivery, wound healing, and tissue engineering. Her studies on chitosan-, polylactide-, and poly(vinyl alcohol)-based electrospun fibers incorporating bioactive compounds such as rosmarinic acid and lidocaine have advanced the field of bioactive and smart materials. Through continuous innovation and international collaboration, Prof. Ignatova has established herself as a leading figure in polymer science, significantly contributing to the advancement of sustainable and biomedical polymer technologies.
Profiles : Scopus | Orcid | Google Scholar
Featured Publications
Ignatova, M., Paneva, D., Kyuchyuk, S., Manolova, N., Rashkov, I., Mourdjeva, M., & Markova, N. (2025). Multifunctional electrospun materials from poly(vinyl alcohol)/chitosan and polylactide incorporating rosmarinic acid and lidocaine with antioxidant and antimicrobial properties. Polymers, 17(19), 2657.
Anastasova, I., Ignatova, M., Manolova, N., Rashkov, I., Markova, N., Toshkova, R., Georgieva, A., Kamenova-Nacheva, M., Trendafilova, A., & Ivanova, V. (2024). Chitosan/hyaluronate complex-coated electrospun poly(3-hydroxybutyrate) materials containing extracts from Melissa officinalis and/or Hypericum perforatum with various biological activities: Antioxidant, antibacterial and in vitro anticancer effects. Polymers, 16(15), 2105.
Anastasova, I., Tsekova, P., Ignatova, M., & Stoilova, O. (2024). Imparting photocatalytic and antioxidant properties to electrospun poly(L-lactide-co-D,L-lactide) materials. Polymers, 16(13), 1814.
Ignatova, M., Manolova, N., Rashkov, I., Georgieva, A., Toshkova, R., & Markova, N. (2023). 5-Amino-8-hydroxyquinoline-containing electrospun materials based on poly(vinyl alcohol) and carboxymethyl cellulose and their Cu²⁺ and Fe³⁺ complexes with diverse biological properties: Antibacterial, antifungal and anticancer. Polymers, 15(14), 3140.
Spasova, M., Stoyanova, N., Nachev, N., Ignatova, M., Manolova, N., Rashkov, I., Georgieva, A., Toshkova, R., & Markova, N. (2023). Innovative fibrous materials loaded with 5-nitro-8-hydroxyquinoline via electrospinning/electrospraying demonstrate antioxidant, antimicrobial and anticancer activities. Antioxidants, 12(6), 1243.
Ignatova, M., Anastasova, I., Manolova, N., Rashkov, I., Markova, N., Kukeva, R., Stoyanova, R., Georgieva, A., & Toshkova, R. (2022). Bio-based electrospun fibers from chitosan Schiff base and polylactide and their Cu²⁺ and Fe³⁺ complexes: Preparation and antibacterial and anticancer activities. Polymers, 14(22), 5002.
Ignatova, M., Nachev, N., Spasova, M., Manolova, N., Rashkov, I., & Naydenov, M. (2022). Electrospun 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol)-containing poly(3-hydroxybutyrate)/polyvinylpyrrolidone antifungal materials prospective as active dressings against Esca. Polymers, 14(3), 367.
Ignatova, M., Manolova, N., Rashkov, I., Markova, N., Kukeva, R., Stoyanova, R., Georgieva, A., & Toshkova, R. (2021). 8-Hydroxyquinoline-5-sulfonic acid-containing poly(vinyl alcohol)/chitosan electrospun materials and their Cu²⁺ and Fe³⁺ complexes: Preparation, antibacterial, antifungal and antitumor activities. Polymers, 13(16), 2690.
Ignatova, M., Stoyanova, N., Manolova, N., Rashkov, I., Kukeva, R., Stoyanova, R., Toshkova, R., & Georgieva, A. (2020). Electrospun materials from polylactide and Schiff base derivative of Jeffamine ED® and 8-hydroxyquinoline-2-carboxaldehyde and its complex with Cu²⁺: Preparation, antioxidant and antitumor activities. Materials Science and Engineering C, 111, 111185.
Stoyanova, N., Ignatova, M., Manolova, N., Rashkov, I., Toshkova, R., & Georgieva, A. (2020). Nanoparticles based on complex of berberine chloride and polymethacrylic or polyacrylic acid with antioxidant and in vitro antitumor activities. International Journal of Pharmaceutics, 119, 119426.
Ignatova, M., Manolova, N., Rashkov, I., & Markova, N. (2018). Antibacterial and antioxidant electrospun materials from poly(3-hydroxybutyrate) and polyvinylpyrrolidone containing caffeic acid phenethyl ester: “In” and “on” strategies for enhanced solubility. International Journal of Pharmaceutics, 548, 13–25.