Shuquan Huang | Chemical Engineering | Research Excellence Award

Assoc. Prof. Dr. Shuquan Huang | Chemical Engineering | Research Excellence Award

Kunming University of Science and Technology | China

Assoc. Prof. Dr. Shuquan Huang is an accomplished researcher in catalysis and sustainable chemical engineering, with a strong focus on electrocatalysis, photocatalysis, and energy‐related catalytic materials. His scholarly output comprises 55 research documents, which have received 3,235 citations across 2,883 citing publications, reflecting wide international recognition and impact, and he holds an h-index of 32. His research addresses the rational design of advanced catalytic systems, including MoS₂-based electrocatalysts, metal–oxide and zeolite‐supported catalysts, and engineered nanostructures for hydrogen production, biomass conversion, selective hydrogenation, and environmental remediation. His work is regularly published in high‐impact journals such as Chemical Engineering Journal, ACS Sustainable Chemistry & Engineering, ACS Catalysis, Green Chemistry, Applied Catalysis B, and Advanced Materials Interfaces. Collectively, his contributions advance efficient, selective, and sustainable catalytic processes for clean energy generation and green chemical transformations.

Research Metrics (Scopus)

3500
2800
2100
1400
0

Citations
3,235

Documents
55

h-index
32

Citations

Documents

h-index


View Scopus Profile

Featured Publications

Verónica Córdoba | Chemical Engineering | Best Researcher Award

Prof. Dr. Verónica Córdoba | Chemical Engineering | Best Researcher Award

Universidad Nacional del Centro de la Provincia de Buenos Aires | Argentina

Prof. Dr. Verónica Córdoba is a researcher whose work focuses on bioenergy, anaerobic digestion, biomethane modelling, and environmental sustainability, with a research portfolio that has earned 381 citations, an h-index of 8, and 8 i10-index publications, reflecting a steadily growing scholarly impact. She has contributed extensively to understanding methane production dynamics from diverse biomass sources, including swine wastewater, cheese whey, macroalgae, third-generation biomass, and agricultural residues. Her publications span high-impact journals with studies on mixture design for anaerobic co-digestion, neural-network-based prediction of biomethane production, thermal behavior of biofuel feedstocks, activated carbon production from biomass waste, and long-term methane emission modelling from waste treatment processes. Her involvement in R&D Project 03/E208 (2023–2025) focuses on the valorization of lignocellulosic residues for low-emission energy scenarios, underscoring her commitment to circular bioeconomy strategies. She also contributes to academic development through the supervision of doctoral fellows working on methane modeling and biomass conversion systems. Additional works include analyses of greenhouse gas emissions in waste management, kinetics of methane generation, renewable fuel drying behavior, and theoretical–practical assessments of electricity generation from biogas. Across more than a decade of scientific output, she has advanced sustainable energy research through rigorous modelling, experimental analysis, and interdisciplinary collaboration.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

Córdoba, V., & Ottolina, G. (2025). Anaerobic co-digestion of swine wastewater, cheese whey and organic waste: Performance optimization through mixture design. Biomass.

Córdoba, V., Bavio, M., & Acosta, G. (2024). Biomethane production modelling from third-generation biomass. Renewable Energy.

Córdoba, V. E., Mussi, J., De Paula, M., & Acosta, G. G. (2023). Prediction of biomethane production of cheese whey by using artificial neural networks. IEEE Latin America Transactions.

Córdoba, V., Manzur, A., & Santalla, E. (2023). Thermal behaviour and emission characteristics of Arundo donax L. as potential biofuel. BioEnergy Research.

Jerez, F., Ramos, P. B., Córdoba, V. E., Ponce, M. F., Acosta, G. G., & Bavio, M. A. (2023). Yerba mate: From waste to activated carbon for supercapacitors. Journal of Environmental Management.

Córdoba, V. E., & Santalla, E. M. (2022). Estimation of long-term methane emissions from mechanical-biological treatment waste through biomethane potential test. Environmental Technology.

Córdoba, V., Manzur, A., & Santalla, E. (2022). Drying kinetics and mathematical modelling of Arundo donax L. canes, a potential renewable fuel. Research in Agricultural Engineering.

Ibarlucía, D. G., Santalla, E. M., & Córdoba, V. E. (2021). Evaluation of biomethane potential and kinetics modelling of green macroalgae from the South Atlantic Sea: Codium sp. and Ulva sp. Environmental Chemistry.

Córdoba, V., Fernández, M., & Santalla, E. (2018). The effect of substrate/inoculum ratio on the kinetics of methane production in swine wastewater anaerobic digestion. Environmental Science and Pollution Research.

Blanco, G., Santalla, E., Córdoba, V., & Levy, A. (2017). Generación de electricidad a partir de biogás capturado de residuos sólidos urbanos: Un análisis teórico-práctico. Report.

Blanco, G., Córdoba, V., Baldi, R., Fernández, M., & Santalla, E. (2016). Outcomes of the Clean Development Mechanism in Argentina. American Journal of Climate Change.

Córdoba, V., Colavolpe, M. B., Fernández, M., Santalla, E., & Albertó, E. (2016). Potential methane production of spent sawdust used in the cultivation of Gymnopilus pampeanus. Journal of Environmental Chemical Engineering.

Córdoba, V., Fernández, M., & Santalla, E. (2016). The effect of different inoculums on anaerobic digestion of swine wastewater. Journal of Environmental Chemical Engineering.

Santalla, E., Córdoba, V., & Blanco, G. (2013). Greenhouse gas emissions from the waste sector in Argentina in business-as-usual and mitigation scenarios. Journal Article.

Rocío Mingorance | Chemical Engineering | Best Research Award

Mrs. Rocío Mingorance | Chemical Engineering | Best Research Award

Ikerlan Technology Research Center | Spain

Author Profile

Orcid

Early Academic Pursuits

Mrs. Rocío Mingorance began her academic journey with a strong foundation in chemical engineering from the University of Granada, where she developed expertise in process engineering and industrial systems. Her educational path expanded with a master’s degree in industrial maintenance engineering from the University of Huelva, which enriched her technical and managerial skills in plant operations and system reliability. Continuing her pursuit of advanced research, she enrolled in a doctoral program in naval and industrial engineering at the University of Coruña in collaboration with the Ikerlan Technology Research Center, where her focus lies on the development of digital twins for process plants.

Professional Endeavors

Her professional career reflects a steady progression through diverse engineering and industrial roles. Beginning with junior engineering positions in thermosolar power plants, she gained hands-on experience in thermal balances, plant operations, and preventive maintenance. Over the years, she expanded her portfolio through roles in research, consultancy, and control room operations, working with leading companies such as Abengoa, Birchman Consulting, Grupo Cosentino, and Marquesado Solar. Currently, she serves as a thermal engineer and algorithms manager at Sunntics, where she leads the design and implementation of advanced thermal control systems to optimize concentrated solar power plants.

Contributions and Research Focus

Mrs. Mingorance’s research and technical contributions have centered on advancing renewable energy technologies, thermal engineering, and digital solutions for industrial systems. Her expertise in developing and applying thermal models for heat and mass transfer has contributed significantly to improving system performance under standard and unexpected conditions. She has also pioneered work on digital twins, offering innovative methodologies to enhance operational strategies and resilience in manufacturing and energy plants. Her publications highlight her contribution to bridging traditional engineering with modern computational tools.

Accolades and Recognition

Her research and professional achievements have been recognized through publications in reputed international journals and conferences. Notably, her work on the evolution of digital twin solutions was presented at the IEEE Smart World Congress, reflecting her standing in the global research community. In addition, her continued contributions to the field of industrial and thermal engineering have positioned her as a promising scholar and professional in advancing sustainable and technologically driven energy solutions.

Impact and Influence

Through her interdisciplinary expertise, Mrs. Mingorance has influenced both industrial practices and academic research. Her ability to integrate advanced modeling techniques with real-world plant operations has enhanced the reliability, efficiency, and safety of thermal and renewable energy systems. Her contributions extend beyond direct applications, inspiring new approaches in engineering education, collaborative industry research, and the adoption of digital innovations in traditional sectors.

Legacy and Future Contributions

Looking forward, Mrs. Mingorance’s ongoing doctoral research in digital twins for process plants is expected to leave a lasting legacy in the field of industrial and naval engineering. By combining her strong background in thermal sciences with cutting-edge computational techniques, she is poised to contribute transformative solutions that support sustainability, automation, and resilience in complex industrial systems. Her career trajectory suggests continued advancements that will influence both academia and industry in the years to come.

Publications


  • Title: A methodology leveraging digital twins to enhance the operational strategy of manufacturing plants in unexpected scenarios

  • Authors: Rocío Mingorance, Diego Crespo Pereira, Jone Uribetxebarria, Urko Leturiondo

  • Journal: Results in Engineering

  • Year: 2025


  • Title: Evolution of Digital Twin solutions in the manufacturing industry

  • Authors: Rocío Mingorance, Diego Crespo Pereira, Jone Uribetxebarria, Urko Leturiondo

  • Journal/Conference: Proceedings of the 2023 IEEE Smart World Congress (SWC)

  • Year: 2023


Conclusion

Mrs. Rocío Mingorance exemplifies the synergy between engineering practice and academic research. With a solid educational foundation, diverse professional experiences, and impactful research contributions, she stands as a leading figure in renewable energy and digital innovation. Her work continues to shape sustainable industrial practices and drive the integration of advanced technologies in energy systems, reflecting a career dedicated to both excellence and progress.

 

Shadi Hassanajili | Chemical Engineering | Best Researcher Award

Prof. Dr. Shadi Hassanajili | Chemical Engineering | Best Researcher Award

Shiraz University | Iran

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Prof. Dr. Shadi Hassanajili laid a strong foundation in the field of chemical and polymer engineering through her studies at leading Iranian universities. Her academic journey began with a bachelor’s degree in chemical engineering, where she investigated the use of PVC plastisol as a synthetic leather material. She advanced her specialization with a master’s degree in polymer engineering, focusing on polyurethane and polypropylene blends for blood bag materials. Her doctoral research in polymer engineering at Tarbiat Modares University centered on polyurethane and polycaprolactone blends as cardiovascular implants, marking the beginning of her lifelong engagement with biomedical materials and polymeric innovations.

Professional Endeavors

Over the years, Prof. Hassanajili has held several significant academic and administrative positions at Shiraz University. Her career began as an assistant professor and evolved into leadership roles such as Head of the Department of Chemical Engineering and Vice Chancellor for Education and Graduate Studies. Rising to the rank of professor, she has made lasting contributions to teaching and institutional development. Her long-standing commitment to higher education reflects her ability to balance research, leadership, and mentoring with excellence.

Contributions and Research Focus

Prof. Hassanajili’s research spans a wide range of areas including biomedical materials, rheology of polymers, nanocomposites, polymeric membranes for gas separation, and ferrofluids for oil spill remediation. She has pioneered work in developing smart polymeric stents with anticoagulation properties, self-healing coatings for anti-corrosion, and nanocomposite gels for water management in hydrocarbon reservoirs. Her patents in polymer-coated nanoparticles, gas separation membranes, and oil pollution devices highlight her innovative approach to solving industrial and environmental challenges. Her research reflects a deep integration of polymer science with healthcare, energy, and environmental applications.

Accolades and Recognition

Throughout her career, Prof. Hassanajili has been recognized for academic excellence and innovation. She graduated with distinction at both the bachelor’s and master’s levels, earning top ranks in her field, and received the prestigious Excellent PhD Thesis Award. Her recognition extends to her patents and funded projects, which showcase her ability to translate research into impactful technological solutions. These honors underscore her standing as a leading figure in polymer and chemical engineering.

Impact and Influence

Prof. Hassanajili has had a profound influence on both academic and industrial spheres. Her work in polymer-based biomedical applications has advanced knowledge in cardiovascular implants, scaffolds, and wound-healing technologies. In the energy sector, her contributions to enhanced oil recovery, polymer-enriched water systems, and nanocomposites have improved efficiency and sustainability. Her teaching of core courses in thermodynamics, rheology, polymer engineering, and fluid mechanics has shaped generations of chemical engineers, while her leadership roles have strengthened Shiraz University’s position in scientific research and education.

Legacy and Future Contributions

The legacy of Prof. Hassanajili lies in her ability to bridge fundamental polymer science with applied engineering for human health, industry, and the environment. Her patents, publications, and collaborative projects with national industries demonstrate her forward-looking vision. With continued engagement in nanomedicine, self-healing materials, and environmentally responsive polymers, her future contributions are poised to further impact healthcare innovations and sustainable engineering practices.

Publications


  • Thermal and mechanical enhancement of poly (methyl methacrylate) microcapsules using multi-walled carbon nanotubes and hydrophobic silica nanoparticles
    Authors: Abed Khavand, Fereshteh Ayazi, Shadi Hassanajili
    Journal: Journal of Molecular Liquids
    Year: 2025


  • Fabrication of rapid self-healing thermoset polymer by the encapsulation of low-viscosity unsaturated vinyl ester resin and methyl ethyl ketone peroxide for the corrosion
    Authors: A. Khavand, S. Hassanajili
    Journal: Polymer Bulletin
    Year: 2024


  • Development and characterization of bio-based polyurethane flexible foams containing silver nanoparticles for efficient dermal healing application
    Authors: M.M. Soltanzadeh, M.R. Hojjati, S. Hassanajili, A.A. Mohammadi
    Journal: New Journal of Chemistry
    Year: 2024


  • Enhanced Natural Gas Sweetening with Ultralow H₂S Concentration via Polycarbonate-Silica Mixed Matrix Membranes
    Authors: R. Sadeghi, S. Hassanajili
    Journal: Korean Journal of Chemical Engineering
    Year: 2024


  • Zoledronate loaded polylactic acid/polycaprolactone/hydroxyapatite scaffold accelerates regeneration and led to enhance structural performance and functional ability of the radial bone defect in rat
    Authors: A. Oryan, S. Hassanajili, S. Sahvieh
    Journal: Iranian Journal of Veterinary Research
    Year: 2023


Conclusion

Prof. Dr. Shadi Hassanajili represents an exceptional blend of academic brilliance, pioneering research, and institutional leadership. From her early academic pursuits in chemical and polymer engineering to her current role as a professor and innovator, she has consistently advanced the boundaries of knowledge. Her contributions in biomedical polymers, nanocomposites, and environmental applications reflect both scientific depth and societal relevance. Her career stands as a testament to the role of dedicated scholarship in driving innovation, inspiring students, and shaping industries.

 

Rizwan Ahmed Bhutto | Chemical Engineering | Best Researcher Award

Dr. Rizwan Ahmed Bhutto | Chemical Engineering | Best Researcher Award

Shenzhen University | China

Author Profile

Scopus

Orcid

Google Scholar

🎓 Early Academic Pursuits

Dr. Rizwan Ahmed Bhutto began his academic journey in Sindh, Pakistan, where he completed his O-Level and A-Level education in science and engineering. He earned his Bachelor’s and Master’s degrees in Chemical Engineering from Mehran University of Engineering and Technology (MUET), Sindh. With a strong foundation in chemical and environmental processes, he pursued a Ph.D. in Chemical Engineering from East China University of Science and Technology (ECUST), Shanghai, graduating in 2022. His doctoral research set the stage for a career focused on cutting-edge biomaterials and nanotechnology.

👨‍🔬 Professional Endeavors

Dr. Bhutto’s career spans both academia and industry. He is currently serving as a Postdoctoral Research Fellow at Shenzhen University, China (2022–2025), where he is developing plant-based polymeric systems for applications in food and pharmaceuticals. Prior to this, he worked as a Technical Expert at Shanghai Runxing Biological Technology, contributing to innovative food chemistry projects, especially involving plant-based dairy formulations and flavor technology. His industrial experience also includes his role as a Chemical Engineer at Ingredion Incorporated, Pakistan (2014–2016), where he focused on glucose and starch-based processing. Complementing this, he served as a Lecturer at MUET, teaching subjects like biochemical engineering, biotechnology, and environmental safety from 2012 to 2014.

🧪 Contributions and Research Focus

Dr. Bhutto’s research covers a vast spectrum of innovative and impactful topics:

🔬 He specializes in nanoparticle synthesis, biopolymer modification, and pH-responsive drug delivery systems, with a particular focus on plant-based polymers and hydrogels for food, pharmaceutical, and environmental applications.

🧫 His Ph.D. project, funded with 1 million RMB by Firmenich Aromatics (China), focused on stabilizing emulsions in cosmetic and fragrance products using Flash Nanoprecipitation, showcasing the industrial relevance of his work.

🌱 His Master's research on bioremediation of hydrocarbons using Bacillus bacteria offers ecological solutions to oil-contaminated environments, while his Bachelor's project on solid waste incinerator design reflects his longstanding commitment to sustainability.

🧬 Dr. Bhutto’s expertise spans microscopy (SEM, TEM, confocal), rheology, spectroscopy (UV-Vis, FTIR, NMR), nanoprecipitation, and cell culture techniques, making him a versatile and accomplished experimentalist.

🏅 Accolades and Recognition

Dr. Bhutto is a recognized contributor in the scientific community with numerous high-impact publications in journals like Trends in Food Science & Technology, Food Hydrocolloids, Food Chemistry, and ACS Omega. His scholarly achievements include:

📘 Over 20 research articles—many as first author—on biopolymer-based emulsions, probiotics/prebiotics encapsulation, and nanoparticle drug delivery systems.

📚 A book chapter titled “Designing Smart and Sustainable Edible Packaging Materials” published by Springer Nature in 2025, reinforcing his role in food-grade polymer innovation.

🌐 He has also contributed as a co-author in cross-disciplinary studies involving soy protein, chitosan-metal composites, and pea protein nanofibrils, working with multinational collaborators in China and beyond.

🌍 Impact and Influence

Dr. Bhutto’s influence extends beyond the lab bench. His guidance of postgraduate students at ECUST and Shenzhen University shows his commitment to mentorship. He has presented at prominent international symposia, including the International Symposium on Polyelectrolytes (2021) and Virtual Mini-Symposium on Drying Technology (2022), reflecting global recognition of his work. His industrial collaborations, such as with Firmenich and Shanghai-based food companies, highlight his ability to bridge academic research with commercial applications in cosmetics, dairy, and nutraceutical sectors.

🔮 Legacy and Future Contributions

With a vision rooted in sustainable innovation, Dr. Rizwan Ahmed Bhutto is poised to shape the future of green materials, biopolymer-based drug delivery systems, and functional food engineering. His work offers transformative solutions in fields like cancer therapy, probiotic preservation, and bio-packaging. Through his dedication to applied research, international collaboration, and student mentorship, Dr. Bhutto’s legacy will inspire future scientists to pursue interdisciplinary challenges that merge material science, biotechnology, and environmental stewardship.

Publications 


📄 Advances in fluorescent probes for hydrogen sulfide detection: Applications in food safety, environmental monitoring, and biological systems
Authors: Imtiaz Ahmed, Shahid Iqbal, Aziz Khan, Farzana Fatima, Hidayatullah Mahar, Rizwan Ahmed Bhutto
Journal: Microchemical Journal
Year: 2025


📄 Formation, physiochemical stability, and bioaccessibility of quercetin-loaded α-lactalbumin amyloid-like fibril nanocomposite with ultrasound and its application in yogurt
Authors: Ling Kang, Rizwan Ahmed Bhutto, Noor ul Ain Hira Bhutto, Yuting Fan, Jiang Yi
Journal: Food Hydrocolloids
Year: 2024


📄 Potato protein as an emerging high-quality: Source, extraction, purification, properties (functional, nutritional, physicochemical, and processing), applications, and challenges using potato protein
Authors: Rizwan Ahmed Bhutto, Noor ul Ain Hira Bhutto, Santosh Khanal, Mingwei Wang, Shahid Iqbal, Yuting Fan, Jiang Yi
Journal: Food Hydrocolloids
Year: 2024


📄 Enhancing rheology and reducing lipid digestion of oil-in-water emulsions using controlled aggregation and heteroaggregation of soybean protein isolate-peach gum microspheres
Authors: Haozhi Chen, Shahid Iqbal, Peng Wu, Ronggang Pan, Ni Wang, Rizwan Ahmed Bhutto, Wajid Rehman, Xiao Dong Chen
Journal: International Journal of Biological Macromolecules
Year: 2024


📄 Polyelectrolyte nanocomplex from sodium caseinate and chitosan as potential vehicles for oil encapsulation by flash nanoprecipitation
Authors: Rizwan Ahmed Bhutto, Noor ul Ain Hira Bhutto, Shahid Iqbal, Salim Manoharadas, Jiang Yi, Yuting Fan
Journal: Food Hydrocolloids
Year: 2024


Qingsong Hu | Chemical Engineering | Best Researcher Award

Prof. Qingsong Hu | Chemical Engineering | Best Researcher Award

Hubei University of Arts and Science | China
Author profile

Scopus

Orcid

🎓 Early Academic Pursuits

Prof. Qingsong Hu began his academic journey with a Bachelor of Science in Pharmaceutical Engineering from the Hebei University of Science and Technology in 2010. His passion for chemical sciences led him to pursue a Ph.D. in Applied Chemistry at Zhejiang University of Technology (ZJUT), which he completed in 2016. This strong academic foundation laid the groundwork for his future research in advanced materials.

🧪 Professional Endeavors

Prof. Hu's career trajectory reflects a steady and impressive progression in academia. He began as a Postdoctoral Associate at Huazhong University of Science and Technology (HUST) from 2016 to 2020. In 2020, he joined Hubei University of Automotive Technology (HBUAS) as a Lecturer, swiftly rising to Associate Professor and eventually becoming a Professor in 2024. In the same year, he expanded his global reach, becoming a Visiting Professor at both Beijing Institute of Technology (BIT) and King Abdullah University of Science and Technology (KAUST) in Saudi Arabia.

🔬 Contributions and Research Focus

Prof. Hu is renowned for his groundbreaking research in photoelectric materials, especially in the domain of luminescent materials and perovskite nanocrystals. His work focuses on understanding the correlation between structural properties and photophysical behavior, unlocking innovations in:

✨ Lighting and display technology
📸 X-ray imaging
🔬 Biofluorescent labeling
📡 Photodetectors

Through structural analysis and dynamic photophysical studies, he has shed light on luminescence mechanisms that are now being translated into real-world applications.

🏆 Accolades and Recognition

Prof. Hu has garnered widespread recognition for his scholarly contributions. His papers have been published in top-tier journals such as Angewandte Chemie International Edition, Advanced Materials, Small, and Inorganic Chemistry. His name is frequently featured as a corresponding author, signifying his leadership in research initiatives. His work on X-ray scintillation and rare-earth-doped nanocrystals has been especially influential in advancing materials science for medical and industrial applications.

🌍 Impact and Influence

Prof. Hu’s research has not only expanded the boundaries of material sciences but also paved the way for safer, more efficient, and flexible X-ray imaging technologies. With over 18 high-impact publications in the last few years, his collaborative efforts across institutions and disciplines demonstrate his international influence and mentorship of emerging researchers in the field.

🌟 Legacy and Future Contributions

As a leader in luminescent material research, Prof. Hu is poised to shape the future of optoelectronics. His current roles at HBUAS and KAUST place him at the heart of interdisciplinary innovation. Looking ahead, his continued focus on environmentally friendly and high-performance materials will likely drive sustainable advancements in technology. With a career marked by rapid progression, innovation, and global collaboration, Prof. Qingsong Hu is set to leave a lasting legacy in the world of chemical and materials science.

Publications


📄 Rare Earth Double Perovskites for Underwater X-Ray Imaging Applications
Authors: Wang, Y., Wang, C., Men, L., Zhu, J., Hu, Q., Xiao, J., Mohammed, O. F.*
Journal: Inorganic Chemistry Frontiers
Year: 2025


📄 High-Fluoride-Induced Rapid Synthesis and Universal Modulation of Hexagonal Phase NaYF₄
Authors: Liu, S., Chen, Y., Wang, S., Zhou, Z., Zhang, R., Cheng, X., Liang, G., Hu, Q.
Journal: Optical Materials
Year: 2025


📄 Colloidal Synthesis of Hollow Double Perovskite Nanocrystals and Their Applications in X-ray Imaging
Authors: Wang, Y., Wang, C., Men, L., Hu, Q., Xiao, J.
Journal: Inorganic Chemistry
Year: 2024


📄 High-Stability Double Perovskite Scintillator for Flexible X-ray Imaging
Authors: Li, J., Hu, Q., Xiao, J., Yan, Z.
Journal: Journal of Colloid and Interface Science
Year: 2024


📄 Highly Effective Hybrid Copper(I) Iodide Cluster Emitter with Negative Thermal Quenched Phosphorescence for X-Ray Imaging
Authors: Hu, Q.†,, Zhang, C.†, Wu, X., Liang, G., Wang, L., Niu, X., Wang, Z., Si, W., Han, Y., Huang, R., Xiao, J., Sun, D.*
Journal: Angewandte Chemie International Edition
Year: 2023


Xuejiao Sun | Chemical Engineering | Best Researcher Award

Dr. Xuejiao Sun | Chemical Engineering | Best Researcher Award

Guangdong Industry Polytechnic | China

Author Profile

Scopus

📚 Early Academic Pursuits

Dr. Xuejiao Sun embarked on her academic journey with a deep passion for chemical engineering. She earned her Bachelor of Engineering degree from Wuhan Polytechnic University in 2010, specializing in chemical and environmental engineering. Her thirst for knowledge and scientific exploration led her to pursue a Ph.D. in Chemical Engineering at the South China University of Technology, where she honed her expertise from 2010 to 2015. Her doctoral research laid a strong foundation for her future contributions in materials science and adsorption technologies.

🏛️ Professional Endeavors

Dr. Sun's professional career reflects a steady and remarkable progression in academia. She began as a Lecturer at Quanzhou Normal University in 2015 and quickly rose to the position of Associate Professor in 2018. Her commitment to research and education then led her to Guangdong Industry Polytechnic in 2021, where she currently serves as an Associate Professor in the School of Chemical Engineering and Technology. Her teaching and mentorship have inspired a new generation of researchers in the field.

🔬 Contributions and Research Focus

Dr. Sun's research primarily revolves around advanced materials, with a focus on Metal-Organic Frameworks (MOFs), porous carbon materials, and adsorption technologies. Her studies have significantly contributed to:

  • Developing novel MOF-based materials for gas adsorption, separation, and environmental applications.
  • Advancing lithium-sulfur battery technology by enhancing key material properties for improved energy storage.
  • Designing porous carbon materials with high surface areas for efficient purification of volatile organic compounds (VOCs) and indoor air pollutants.
  • Innovating superhydrophobic materials for industrial and environmental applications.

Her work has not only led to scientific advancements but also holds potential for real-world applications in energy storage, environmental protection, and chemical engineering.

🏆 Accolades and Recognition

Dr. Sun's contributions have been recognized through multiple research grants, including prestigious funding from the National Natural Science Foundation of China. She has served as a Principal Investigator (PI) and Co-Principal Investigator (Co-PI) on numerous projects, securing millions in research funding. Her work has been published in high-impact journals such as Environmental Research, Chemical Engineering Journal, and Energy & Fuels. Additionally, she holds several Chinese patents, reflecting her commitment to translating research into practical innovations.

🌍 Impact and Influence

As a leading researcher in chemical engineering, Dr. Sun has significantly influenced the field of adsorption materials and energy storage. Her studies on MOFs and porous carbon materials have opened new avenues for sustainable environmental solutions. Her mentorship has also shaped many aspiring scientists, fostering a culture of excellence and innovation in academia.

🔮 Legacy and Future Contributions

Dr. Sun's legacy is defined by her relentless pursuit of scientific excellence and innovation. Looking ahead, she aims to further explore advanced nanomaterials, expand her research on adsorption mechanisms, and contribute to green technologies for a sustainable future. Through her pioneering work, she continues to bridge the gap between fundamental research and practical applications, leaving a lasting impact on chemical engineering and materials science.

Publications


  • 📄 Water phase synthesis of nano-hierarchical porous metal–organic frameworks for removal of uranium (VI) from aqueous solution
    Author(s): Kai Zheng, Kaikai Zhao, Weibiao Guo, Xuquan Liu, Yu Liang, Kuan Liang, Qianjun Deng, Hongxia Xi, Pengfei Yang, Xuejiao Sun, Chongxiong Duan
    Journal: Inorganica Chimica Acta
    Year: 2025


  • 📄 MOFs-derived porous carbon materials for gas adsorption and separation
    Author(s): Xuejiao Sun, Chenpeng Wang, Pan Xiaoyang, Liu Yubin, Chen Kongfa, Shuiyuan Luo
    Journal: Chinese Science Bulletin (Chin Sci Bull)
    Year: 2021


  • 📄 Novel hierarchical Fe(Ⅲ)-doped Cu-MOFs with enhanced adsorption of benzene vapor
    Author(s): Xuejiao Sun, Xiulian Gu, Wentao Xu, Wen-Jie Chen, Qibin Xia*, Xiaoyang Pan, Xiaojing Zhao, Yi Li, Qi-Hui Wu*
    Journal: Frontiers in Chemistry
    Year: 2019


  • 📄 Novel MOF-5 derived porous carbons as excellent adsorption materials for n-hexane
    Author(s): Xuejiao Sun, Tingting Wu, Zhimin Yan, Wen-Jie Chen, Xiao-Bing Lian, Qibin Xia*, Shaoyun Chen, Qi-Hui Wu*
    Journal: Journal of Solid State Chemistry
    Year: 2019


  • 📄 SiC Nanofibers as Long-Life Lithium-Ion Battery Anode Materials
    Author(s): Xuejiao Sun, Changzhen Shao, Feng Zhang, Yi Li, Qi-Hui Wu*, Yonggang Yang
    Journal: Frontiers in Chemistry
    Year: 2018


 

Almas Kiran | Chemical Engineering | Best Researcher Award

Ms. Almas Kiran | Chemical Engineering | Best Researcher Award

Qingdao Bioenrgy and Bioprocess Technology Shandong Institute | China 

Author Profile

Google Scholar

Early Academic Pursuits 🎓

Ms. Almas Kiran’s academic journey is a testament to her dedication to the field of analytical chemistry and nanotechnology. She began her higher education at the University of Sindh, Pakistan, earning a B.S. in Analytical Chemistry (2010–2015). Her passion for scientific research led her to pursue a Master's degree at Dalian University of Technology, China (2018–2021), where she honed her expertise in analytical techniques and materials chemistry. Her relentless pursuit of knowledge culminated in a PhD from QIBEBT Bioenergy and Bioprocess Technology, China (2023–2024), specializing in cutting-edge research on wearable electrochemical biosensors and nano energy devices.

Professional Endeavors 🏆

Ms. Kiran’s professional journey is marked by diverse roles in academia and research. She began as an internee at the Examinations Wing of the University of Sindh and later served as Vice Principal and Instructor at Iqra Academy, Jamshoro. Her international experience includes working as a researcher at Zhang Dayu School, Dalian University of Technology, where she explored wearable sensors, electrochemical stations, and nanotechnology. Currently, she is a senior researcher at QIBEBT Bioenergy and Bioprocess Technology, where she actively contributes to groundbreaking research in smart sensors and sustainable energy solutions.

Contributions and Research Focus 🔬

Ms. Kiran’s research spans multiple frontiers of science and technology. She has significantly contributed to the development of:

  • Wearable electrochemical biosensors for non-invasive health monitoring (sweat, saliva, tear-based sensing).
  • Nano energy devices that power next-generation self-sustained smart sensors.
  • Graphene-based nanomaterials for high-performance sensing applications.
  • Microfluidics and nano-fabrication techniques for advanced electronic devices.
    Her expertise extends to asymmetric polymerization, chiral catalyst design, and advanced characterization techniques such as NMR, HPLC, and glove box applications.

Accolades and Recognition 🏅

Ms. Kiran’s excellence in research is reflected in her scientific publications and international collaborations. She has authored multiple impactful papers on flexible biosensors and nanomaterials, including studies on dopamine and uric acid detection and Berlin green-printed smart sensors. Her innovative work in lactide polymerization has garnered attention in the field of polymer science. She has also received prestigious training certifications, including advanced analytical techniques and RETSCREEN software from Canada.

Impact and Influence 🌍

Ms. Kiran’s research has a profound impact on healthcare and wearable technology. Her work on flexible biosensors is shaping the future of non-invasive diagnostics, offering new possibilities for real-time health monitoring. She plays an instrumental role in advancing nano energy solutions, bridging the gap between sustainable energy and smart healthcare devices. Through her contributions, she is inspiring the next generation of researchers in materials science and bioelectronics.

Legacy and Future Contributions 🚀

With her pioneering spirit and relentless pursuit of scientific innovation, Ms. Almas Kiran is poised to make significant contributions to the fields of wearable biosensors, nanotechnology, and smart healthcare. Her future endeavors will likely focus on enhancing biosensor sensitivity, developing sustainable nano energy solutions, and expanding interdisciplinary collaborations worldwide. Her legacy will be one of groundbreaking research and transformative technological advancements that redefine the landscape of biomedical science and energy applications.

Publications


📄 Exploring the Catalytic Efficiency of Lithium Bis(trimethylsilyl)amide (LiHMDS) in Lactide Polymerization
Author(s): A. Kiran, A.C. Kingsley, H. Ahmed
Journal: Polymers (20734360)
Year: 2025


📄 Flexible Screen-Printed Sensor for the Detection of Dopamine and Uric Acid
Author(s): A. Kiran
Journal: China Academic Journal Electronic Publication
Year: 2021


📄 Wearable Helical Molybdenum Nitride Supercapacitors for Self-Powered Healthcare Smart Sensors
Author(s): F. Lv, H. Ma, L. Shen, Y. Jiang, T. Sun, J. Ma, X. Geng, A. Kiran, N. Zhu
Journal: ACS Applied Materials & Interfaces
Year: 2021


📄 Wearable Biomolecule Smart Sensors Based on One-Step Fabricated Berlin Green Printed Arrays
Author(s): J. Ma, Y. Jiang, L. Shen, H. Ma, T. Sun, F. Lv, A. Kiran, N. Zhu
Journal: Biosensors and Bioelectronics
Year: 2019


Saleh Alaswad | Chemical Engineering | Best Innovation Award

Assoc. Prof. Dr. Saleh Alaswad | Chemical Engineering | Best Innovation Award

King Abdulaziz City for Science and Technology | Saudi Arabia

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 🎓

Assoc. Prof. Dr. Saleh Alaswad began his academic journey with a Bachelor of Engineering in Chemical Engineering Technology from the College of Technology, Riyadh, specializing in Separation Engineering. He furthered his education with a Master of Science in Environmental Sciences from King Saud University, focusing on radionuclide distribution in Saudi Arabia’s surface soils. His doctoral research at Surrey University, UK, under Prof. Dr. Rex Thrope, delved into advanced Manipulations Osmosis Desalination and Membrane Processing, setting the foundation for his expertise in water processing technologies.

Professional Endeavors 🌍

Dr. Alaswad's career encompasses a blend of academic teaching and cutting-edge research. Currently, he is an Associate Research Professor at the Nuclear Science Research Institute, where he contributes to the advancement of chemical process engineering and nuclear technology. His professional experience includes significant work in radiation protection, low-power research reactors, and environmental monitoring, reflecting his interdisciplinary expertise.

Contributions and Research Focus 🔬

Dr. Alaswad's research focuses on:

  • Chemical Process Engineering: Innovations in forward osmosis, membrane filtration systems, and AI-driven desalination technologies.
  • Nuclear Technology: Development of microreactors, neutron activation analysis, and stable isotope applications.
  • Environmental Studies: Pioneering work in air pollution monitoring and environmental impact assessments.

His projects, supported by global collaborations with IAEA and Japan Petroleum Energy Center, emphasize sustainable solutions for water treatment and agricultural irrigation, leveraging cutting-edge technology and research.

Accolades and Recognition 🏆

Dr. Alaswad’s contributions to science have earned him the prestigious Global Prize for Innovation in Desalination. His work has been showcased at notable international conferences like the Future of Desalination International Conference and the Saudi Water Forum. His achievements underscore his commitment to addressing global water and environmental challenges.

Impact and Influence 🌟

Through groundbreaking research and international collaborations, Dr. Alaswad has significantly influenced water desalination technologies and environmental protection. His work bridges academia, industry, and policy-making, driving innovations that align with sustainable development goals.

Legacy and Future Contributions 🌱

Dr. Alaswad’s legacy lies in his multifaceted contributions to chemical engineering, environmental science, and nuclear technology. His continued research on cost-effective desalination and smart irrigation systems promises impactful solutions for global water scarcity and agricultural challenges, ensuring a sustainable future for generations to come.

 

Publications


📜 Integrated System of Reverse Osmosis and Forward Pressure-Assisted Osmosis from ZrO2 Base Polymer Membranes for Desalination Technology
Authors: Saleh O. Alaswad, Heba Abdallah, Eman S. Mansor
Journal: Technologies, Year: 2024


📜 Artificial Intelligence Applications in Forward Osmosis for Water Treatment: Recent Developments and Research Directions
Authors: Saleh O. Alaswad, Eydhah Almatrafi
Journal: Journal of Desalination and Water Treatment, Year: 2024


📜 Fabrication of Spiny-like Spherical Copper Metal–Organic Frameworks for the Microextraction of Arsenic(III) from Water and Food Samples before ICP-MS Detection
Authors: Mohamed Sheikh, Saleh O. Alaswad, Mohamed A. Habila, Zeid A. ALOthman
Journal: MDPI Applied Science, Year: 2023


📜 Advances in Guar Gum-Based Materials in Biomedical Applications with Special Reference to Tissue Engineering Applications
Authors: PN Sudha, S Pavithra, Vishnu Priya Murali, Saleh O. Alaswad, Prabhakarn Arunachalam
Journal: Natural Biopolymers in Drug Delivery and Tissue Engineering, Year: 2023


📜 Enhancing Photocatalytic Performance of Co-TiO2 and Mo-TiO2-Based Catalysts through Defect Engineering and Doping: A Study on the Degradation of Organic Pollutants under UV Light
Authors: Mubarak A. Eldoma, Saleh O. Alaswad, Mohamed A. Mahmoud, et al.
Journal: Journal of Photochemistry and Photobiology A: Chemistry,  Year: 2023


 

Noorfidza Yub Harun | Chemical Engineering | Best Researcher Award

Dr. Noorfidza Yub Harun | Chemical Engineering | Best Researcher Award

Universiti Teknologi Petronas | Malaysia

Author Profile

Scopus

Google Scholar

Early Academic Pursuits 🎓

Dr. Noorfidza Yub Harun's academic journey is marked by a strong foundation in both chemical and mechanical engineering. She earned her PhD in Mechanical Engineering from the University of New Brunswick, where she also obtained a Diploma in University Teaching. Her earlier academic qualifications include an MSc in Forest Engineering, another MSc in Environmental Energy Engineering from the University of Sheffield, and a BEng in Chemical and Process Engineering from the National University of Malaysia. These diverse academic experiences have provided her with a broad and deep understanding of engineering principles, particularly in the fields of environmental and mechanical engineering.

Professional Endeavors 💼

As a Senior Lecturer at Universiti Teknologi PETRONAS, Dr. Noorfidza has made significant contributions to the field of chemical engineering through her teaching and research. Her professional endeavors include leading numerous research projects, such as the synthesis of mechanical characteristics and ash fusion temperature of krafts-based pellet fuel and the development of biochar-based adsorbents for heavy metals remediation. These projects not only highlight her expertise but also her commitment to advancing sustainable and environmentally friendly engineering solutions.

Contributions and Research Focus 🔬

Dr. Noorfidza's research primarily focuses on the intersection of environmental sustainability and engineering. Her work on ash fusion behavior, biochar development, and the incorporation of glycerol as a compatibilizer in biopolymer matrices are particularly noteworthy. These projects demonstrate her ability to address complex environmental challenges through innovative engineering solutions. Her research has significant implications for the fields of energy production, waste management, and environmental remediation, making her a key contributor to sustainable engineering practices.

Accolades and Recognition 🏅

Throughout her career, Dr. Noorfidza has been recognized for her contributions to academia and research. Her role as the principal investigator in several high-impact research projects is a testament to her leadership and expertise. Her work has garnered attention within the academic community, particularly for its focus on sustainable engineering solutions. While specific awards and accolades are not detailed here, her ongoing research projects and the respect she commands in her field suggest a scholar of high repute.

Impact and Influence 🌍

Dr. Noorfidza's impact extends beyond her immediate academic environment. Through her research, she has contributed to the development of sustainable engineering practices that have the potential to address global environmental challenges. Her work on biochar-based adsorbents and renewable energy sources like biomass and sludge-derived fuels has influenced both the academic community and industry practices. Additionally, her teaching has shaped the next generation of engineers, instilling in them the importance of environmental sustainability in engineering.

Legacy and Future Contributions 🌟

As Dr. Noorfidza continues her work at Universiti Teknologi PETRONAS, her legacy is likely to be one of innovation and dedication to sustainable engineering. Her ongoing research and teaching efforts ensure that she will continue to contribute significantly to the field. Her work not only addresses current environmental challenges but also lays the groundwork for future advancements in chemical and environmental engineering. Dr. Noorfidza's career thus far suggests that her future contributions will continue to impact the field positively, making her a worthy candidate for recognition as an outstanding scholar.

 

Publications  📚


📄 Title: Response Surface Methodology and Artificial Neural Network Modelling of Palm Oil Decanter Cake and Alum Sludge Co-Gasification for Syngas (CO+H2) Production
Authors: Kunmi Joshua Abioye, Noorfidza Yub Harun, Ushtar Arshad, Suriati Sufian, Mohammad Yusuf, Ahmad Hussaini Jagaba, Joshua O. Ighalo, Abdullah A. Al-Kahtani, Hesam Kamyab, Ashok Kumar, Chander Prakash, Jude A. Okolie, Hussameldin Ibrahim
Journal: International Journal of Hydrogen Energy
Year: 2024


📄 Title: Optimization of Operational Parameters Using Artificial Neural Network and Support Vector Machine for Bio-oil Extracted from Rice Husk
Authors: Ahmed, A., Yub Harun, N., Waqas, S., Arshad, U., Ghalib, S.A.
Journal: ACS Omega
Year: 2024


📄 Title: Optimization of Syngas Production from Co-Gasification of Palm Oil Decanter Cake and Alum Sludge: An RSM Approach with Char Characterization
Authors: Abioye, K.J., Harun, N.Y., Sufian, S., Chelliapan, S., Kang, K.
Journal: Environmental Research
Year: 2024


📄 Title: Energy-Efficient Single-Stage Membrane Rotating Biological Contactor for Wastewater Treatment
Authors: Waqas, S., Harun, N.Y., Lock, S.S.M., Alsaadi, A.S.
Journal: Bioresource Technology Reports
Year: 2024


📄 Title: Optimization of Operational Parameters Using RSM, ANN, and SVM in Membrane Integrated with Rotating Biological Contactor
Authors: Waqas, S., Harun, N.Y., Arshad, U., Nordin, N.A.H., Alsaadi, A.S.
Journal: Chemosphere
Year: 2024