Yana Mourdjeva | Engineering | Best Researcher Award

Mrs. Yana Mourdjeva | Engineering | Best Researcher Award

Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre – BAS | Bulgaria

Mrs. Yana Mourdjeva is a distinguished researcher at the Institute of Metal Science, Equipment, and Technologies with the Center for Hydro- and Aerodynamics “Acad. A. Balevski” at the Bulgarian Academy of Sciences (IMSETHC-BAS), serving in the Laboratory of Transmission Electron Microscopy (LMTC). She holds a Master’s degree in Machine Engineering from the Technical University of Sofia and a Ph.D. in Material Science and Technology of Machine Building Materials from IMSETHC-BAS. Her research focuses on materials science, characterization of metals and alloys, transmission electron microscopy, hydrogen embrittlement, nanomaterials, and superplasticity. With an h-index of 5, she has authored 18 scientific publications, including 8 with impact factors, and her work has received 64 citations. In recent years, she has actively contributed to projects funded by the Bulgarian National Science Fund and the EU Next Generation initiative, exploring advanced aluminum composites, amorphous alloys, and hydrogen embrittlement mechanisms. She has participated in international Erasmus collaborations at the Metallurgy Institute in Krakow, Poland, further enhancing her expertise in materials characterization. Her research outcomes have appeared in reputed journals such as Metals and Journal of Materials Engineering and Performance, strengthening the field’s understanding of microstructural evolution and performance of metallic materials.

Profiles : Scopus | Orcid

Featured Publications

Dyakova, V., Yanachkov, B., Valuiska, K., Mourdjeva, Y., Krastev, R., Simeonova, T., Kolev, K., Lazarova, R., & Katzarov, I. (2025). The impact of hydrogen charging time on microstructural alterations in pipeline low-carbon ferrite–pearlite steel. Metals. Multidisciplinary Digital Publishing Institute.

Lazarova, R., & Mourdjeva, Y. (2025, May 7). Microstructural explanation of the mechanical properties of Al–GNPs composites with Al₄C₃ produced by powder metallurgy method and extrusion. Journal of Information Systems Engineering and Management, 10(43s).

Lazarova, R., Anestiev, L., Mourdjeva, Y., Valuiska, K., & Petkov, V. (2025, March 5). Microstructural evolution, strengthening mechanisms, and fracture behavior of aluminum composites reinforced with graphene nanoplatelets and in situ–formed nano-carbides. Metals, 15(3).

Dyakova, V., Mourdjeva, Y., Simeonova, T., Krastev, R., Atanasov, I., Drenchev, L., & Kavardjikov, V. (2024). Microstructural analysis of 40X steel after strain-controlled fatigue. Journal of Theoretical and Applied Mechanics (Bulgaria).

Yanachkov, B., Mourdjeva, Y., Valuiska, K., Dyakova, V., Kolev, K., Kaleicheva, J., Lazarova, R., & Katzarov, I. (2024). Effect of hydrogen content on the microstructure, mechanical properties, and fracture mechanism of low-carbon lath martensite steel. Metals, 14.

Dyakova, V., Cherneva, S., Mourdjeva, Y., & Kostova, Y. (2024, June 30). Influence of the content of Ni as minority alloying element on the microstructure and mechanical properties of amorphous and ultrafine crystalline Al–Cu–Mg–Ni alloys. Proceedings of the Bulgarian Academy of Sciences.

Dyakova, V., Mourdjeva, Y., Spasova, H., Stefanov, G., & Kostova, Y. (2023). Effect of Cu as minority alloying element on glass forming ability and crystallization behavior of rapidly solidified Al–Si–Ni ribbons. Vide. Tehnologija. Resursi – Environment, Technology, Resources.

Dyakova, V., Mourdjeva, Y., Marinkov, N., Stefanov, G., Kostova, Y., & Gyurov, S. (2023). Effect of Ni as minority alloying element on glass forming ability and crystallization behavior of rapidly solidified Al–Cu–Mg–Ni ribbons. Journal of Chemical Technology and Metallurgy, 58(5).

Kolev, M., Lazarova, R., Petkov, V., Mourdjeva, Y., & Nihtianova, D. (2023). Investigating the effects of graphene nanoplatelets and Al₄C₃ on the tribological performance of aluminum-based nanocomposites. Metals, 13.

Mourdjeva, Y., Karashanova, D., Nihtianova, D., & Lazarova, R. (2023). Microstructural characteristics of Al₄C₃ phase and the interfaces in Al/graphene nanoplatelet composites and their effect on the mechanical properties. Journal of Materials Engineering and Performance.

Lazarova, R., Mourdjeva, Y., Nihtianova, D., Stefanov, G., & Petkov, V. (2022). Fabrication and characterization of aluminum–graphene nanoplatelets–nano-sized Al₄C₃ composite. Metals, 12(12).

Dyakova, V., Stefanov, G., Penkov, I., Kovacheva, D., Marinkov, N., Mourdjeva, Y., & Gyurov, S. (2022). Influence of Zn on glass forming ability and crystallization behaviour of rapidly solidified Al–Cu–Mg (Zn) alloys. Journal of Chemical Technology and Metallurgy, 57(3).

Dyakova, V., Stefanov, G., Kovacheva, D., Mourdjeva, Y., Marinkov, N., Penkov, I., & Georgiev, J. (2022). Influence of Zr and Zn as minority alloying elements on glass forming ability and crystallization behavior of rapidly solidified Al–Cu–Mg ribbons. AIP Conference Proceedings, 2449.

Lazarova, R., Mourdjeva, Y., Petkov, V., Marinov, M., Dimitrova, R., & Shuleva, D. (2022, December). Microstructure and mechanical properties of aluminum–graphene composites produced by powder metallurgical method. Journal of Materials Engineering and Performance, 31(12).

Sanae Zriouel | Materials Science | Women Research Award

Prof. Sanae Zriouel | Materials Science | Women Research Award

Cadi Ayyad University | Morocco

Prof. Sanae Zriouel is an accomplished physicist with a strong research footprint, boasting 18 documents, 188 citations, and an h-index of 9. Her research encompasses graphene and related materials, physics of two-dimensional nanostructures, topological insulators, chalcopyrite semiconductors, perovskite structures, mathematical physics, and quantum and statistical physics, employing advanced numerical simulations including ab-initio calculations, DFT, Green functions, Monte Carlo, and molecular dynamics. She currently serves as Associate Professor of Physics at Cadi Ayyad University, Morocco, after holding positions as Assistant Professor at Sultan Moulay Slimane University and Researcher at Mohammed V University. Prof. Zriouel has a PhD in Mathematical Physics and a Habilitation Universitaire (HDR), complemented by engineering and bachelor degrees in electro-mechanics, physical sciences, and English studies. She has been recognized with numerous awards including full membership in OWSD and multiple national and international research honors. Prof. Zriouel has supervised over 30 master’s and bachelor students, contributed extensively to academic and research committees, coordinated national and international projects, and actively participated in more than 80 conferences. Her work in quantum materials, nanostructures, and simulations has significantly advanced theoretical and applied physics, reflecting her impact in the scientific community through research, mentorship, and collaborative projects worldwide.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

Amzaoued, M., Zriouel, S., & Mabrouki, M. (2025). DFT computational modeling studies of electronic and magnetic features of transition metal doped ZnTe. Physics Open, 24, 100275.

Ahsan, J., Rather, M., Sultan, K., Zriouel, S., & Hlil, E. (2025). In-depth study of double perovskite Sr₂NiTaO₆: Structural, electronic, thermoelectric, and spintronic properties for sustainable and high-performance applications. Computational Condensed Matter, 43, e01026.

Zriouel, S., Mhirech, A., Kabouchi, B., Bahmad, L., Fadil, Z., Husain, F., & Raorane, C. (2025). Investigating thermodynamic and magnetic behavior of graphullerene-like nanostructure using Monte Carlo techniques. Philosophical Magazine, 1–14.

Saber, N., Zriouel, S., Mhirech, A., Kabouchi, B., Bahmad, L., & Fadil, Z. (2023). Magnetic properties and magnetocaloric effects of the graphullerene-like 4−(Mg₄C₆₀) nanostructure: A Monte Carlo study. Modern Physics Letters B, 38, 2350199.

Zriouel, S., & Jellal, A. (2022). Engineering quantum tunneling effect of carriers in silicene field-effect transistors. arXiv preprint arXiv:2212.06072.

Zriouel, S. (2021). Phase transitions and critical dielectric phenomena of janus transition metal oxides. Materials Science and Engineering B, 267, 115087.

Zriouel, S., et al. (2020). Effect of p−d hybridization on half-metallic properties of some diluted II−IV−V₂ chalcopyrites for spintronic applications. Physica Scripta, 95, 045809.

Zriouel, S. (2020). Phase transitions and compensation behavior of graphene-based Janus materials. Journal of Magnetism and Magnetic Materials, 493, 165711.

Taychour, B., Zriouel, S., & Drissi, B. (2018). Half-metallic ferromagnetic character in ZnXP₂ (X = Ge, Si) chalcopyrites doped with Mn. Journal of Superconductivity and Novel Magnetism, 1–7.

Saidi, S., Zriouel, S., Drissi, B., & Maaroufi, M. (2018). First principles study of electronic and optical properties of Ag₂CdSnS₄ chalcogenides for photovoltaic applications. Computational Materials Science, 152, 291–299.

Saidi, S., Zriouel, S., Drissi, B., & Maaroufi, M. (2018). A DFT study of electro-optical properties of kesterite Ag₂CdSnX₄ for photovoltaic applications. Physica E, 103, 171–179.

 

Visakh P M | Chemistry | Lifetime Achievement in Books Award

Dr. Visakh P M | Chemistry | Lifetime Achievement in Books Award

Mahatma Gandhi University | India

Author profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Visakh P. M began his academic journey in polymer chemistry at the School of Chemical Sciences, Mahatma Gandhi University in Kerala, India, where he completed his master’s, MPhil, and doctoral studies. His early training in chemistry laid the foundation for his specialization in polymer science and nanocomposites. His research during these years focused on bio-nanomaterials and advanced polymer systems, providing him with the skills and vision to expand into cutting-edge materials science.

Professional Endeavors

Following his doctoral studies, Dr. Visakh embarked on a global research career. He pursued postdoctoral research at Tomsk Polytechnic University in Russia, later serving as Associate Professor at TUSUR University, Tomsk. His career has since extended to his current role at the Natural Bioactive Materials Laboratory, Department of Bioengineering, Ege University, Turkey. Alongside these appointments, he has engaged in visiting research positions at institutions across Europe and South America, highlighting his international academic presence and collaborations.

Contributions and Research Focus

Dr. Visakh’s research contributions span polymer sciences, nanocomposites, material sciences, bio-nanocomposites, fire-retardant polymers, and liquid crystalline polymers. His work combines fundamental and applied research, advancing knowledge in sustainable materials, sensor development, and high-performance composites. His editorial leadership in producing dozens of books with leading international publishers further reflects his commitment to advancing global scientific discourse.

Accolades and Recognition

Dr. Visakh’s scientific impact has been recognized widely. He has been listed among the World’s Top 2% Scientists by Stanford University for consecutive years, a testament to his citation record, h-index, and influence in materials science. He has received numerous fellowships and research grants, including prestigious national and international awards supporting his advanced studies and collaborations across multiple countries.

Impact and Influence

Through his prolific output of over 50 edited volumes, numerous research articles, and book chapters, Dr. Visakh has shaped the global understanding of polymers and nanomaterials. His contributions extend beyond research to mentoring and academic leadership, as seen in his guest editorial roles for international journals. His ability to connect science with real-world applications has impacted fields ranging from sustainable material development to advanced industrial and biomedical uses.

Legacy and Future Contributions

Dr. Visakh’s legacy lies in his blend of scholarly productivity and global engagement. His editorial work has created lasting resources for researchers, while his scientific contributions continue to inspire advancements in polymer and nanoscience. Looking forward, his ongoing research in bio-nanocomposites and material applications in medicine, energy, and sustainability is set to expand both his personal impact and the reach of polymer science worldwide.

Publications


Article: Improvement of the Thermal Behaviour of Epoxy/Fe Nanoparticle Composites by the Addition of Flame Retardants
Authors: Nazarenko, O.B., Visakh, P.M., Amelkovich, Y.A. et al.
Journal: Journal of Inorganic and Organometallic Polymers and Materials
Year: 2025


Article: Thermal Stability and Flammability of Epoxy Composites Filled with Multi-Walled Carbon Nanotubes, Boric Acid, and Sodium Bicarbonate
Authors: Olga B. Nazarenko, Yulia A. Amelkovich, Alexander G. Bannov, Irina S. Berdyugina, Visakh P. Maniyan
Journal: Polymers
Year: 2021


Article: Mechanical and Thermal Properties of Moringa oleifera Cellulose-Based Epoxy Nanocomposites
Authors: Nadir Ayrilmis, Ferhat Ozdemir, Olga B. Nazarenko, P. M. Visakh
Journal: Journal of Composite Materials
Year: 2019


Article: Effect of Boric Acid on Thermal Behavior of Copper Nanopowder/Epoxy Composites
Authors: Olga B. Nazarenko, Alexander I. Sechin, Tatyana V. Melnikova, P. M. Visakh
Journal: Journal of Thermal Analysis and Calorimetry
Year: 2018


Article: Effect of Electron Beam Irradiation on Thermal and Mechanical Properties of Aluminum Based Epoxy Composites
Authors: Visakh P. M., O.B. Nazarenko, C. Sarath Chandran, T.V. Melnikova, S. Yu. Nazarenko, J.-C. Kim
Journal: Radiation Physics and Chemistry
Year: 2017


Conclusion

Dr. Visakh P. M is a globally recognized scholar whose career exemplifies dedication to research, teaching, and scientific dissemination. From his foundational work in polymer chemistry to his international collaborations and extensive editorial contributions, he has built a profile that reflects excellence, leadership, and innovation. His influence in polymer and nanomaterials research, combined with recognition as one of the world’s leading scientists, ensures that his legacy will continue to guide future discoveries and shape advancements across multiple domains of science.

Shadi Hassanajili | Chemical Engineering | Best Researcher Award

Prof. Dr. Shadi Hassanajili | Chemical Engineering | Best Researcher Award

Shiraz University | Iran

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Prof. Dr. Shadi Hassanajili laid a strong foundation in the field of chemical and polymer engineering through her studies at leading Iranian universities. Her academic journey began with a bachelor’s degree in chemical engineering, where she investigated the use of PVC plastisol as a synthetic leather material. She advanced her specialization with a master’s degree in polymer engineering, focusing on polyurethane and polypropylene blends for blood bag materials. Her doctoral research in polymer engineering at Tarbiat Modares University centered on polyurethane and polycaprolactone blends as cardiovascular implants, marking the beginning of her lifelong engagement with biomedical materials and polymeric innovations.

Professional Endeavors

Over the years, Prof. Hassanajili has held several significant academic and administrative positions at Shiraz University. Her career began as an assistant professor and evolved into leadership roles such as Head of the Department of Chemical Engineering and Vice Chancellor for Education and Graduate Studies. Rising to the rank of professor, she has made lasting contributions to teaching and institutional development. Her long-standing commitment to higher education reflects her ability to balance research, leadership, and mentoring with excellence.

Contributions and Research Focus

Prof. Hassanajili’s research spans a wide range of areas including biomedical materials, rheology of polymers, nanocomposites, polymeric membranes for gas separation, and ferrofluids for oil spill remediation. She has pioneered work in developing smart polymeric stents with anticoagulation properties, self-healing coatings for anti-corrosion, and nanocomposite gels for water management in hydrocarbon reservoirs. Her patents in polymer-coated nanoparticles, gas separation membranes, and oil pollution devices highlight her innovative approach to solving industrial and environmental challenges. Her research reflects a deep integration of polymer science with healthcare, energy, and environmental applications.

Accolades and Recognition

Throughout her career, Prof. Hassanajili has been recognized for academic excellence and innovation. She graduated with distinction at both the bachelor’s and master’s levels, earning top ranks in her field, and received the prestigious Excellent PhD Thesis Award. Her recognition extends to her patents and funded projects, which showcase her ability to translate research into impactful technological solutions. These honors underscore her standing as a leading figure in polymer and chemical engineering.

Impact and Influence

Prof. Hassanajili has had a profound influence on both academic and industrial spheres. Her work in polymer-based biomedical applications has advanced knowledge in cardiovascular implants, scaffolds, and wound-healing technologies. In the energy sector, her contributions to enhanced oil recovery, polymer-enriched water systems, and nanocomposites have improved efficiency and sustainability. Her teaching of core courses in thermodynamics, rheology, polymer engineering, and fluid mechanics has shaped generations of chemical engineers, while her leadership roles have strengthened Shiraz University’s position in scientific research and education.

Legacy and Future Contributions

The legacy of Prof. Hassanajili lies in her ability to bridge fundamental polymer science with applied engineering for human health, industry, and the environment. Her patents, publications, and collaborative projects with national industries demonstrate her forward-looking vision. With continued engagement in nanomedicine, self-healing materials, and environmentally responsive polymers, her future contributions are poised to further impact healthcare innovations and sustainable engineering practices.

Publications


  • Thermal and mechanical enhancement of poly (methyl methacrylate) microcapsules using multi-walled carbon nanotubes and hydrophobic silica nanoparticles
    Authors: Abed Khavand, Fereshteh Ayazi, Shadi Hassanajili
    Journal: Journal of Molecular Liquids
    Year: 2025


  • Fabrication of rapid self-healing thermoset polymer by the encapsulation of low-viscosity unsaturated vinyl ester resin and methyl ethyl ketone peroxide for the corrosion
    Authors: A. Khavand, S. Hassanajili
    Journal: Polymer Bulletin
    Year: 2024


  • Development and characterization of bio-based polyurethane flexible foams containing silver nanoparticles for efficient dermal healing application
    Authors: M.M. Soltanzadeh, M.R. Hojjati, S. Hassanajili, A.A. Mohammadi
    Journal: New Journal of Chemistry
    Year: 2024


  • Enhanced Natural Gas Sweetening with Ultralow H₂S Concentration via Polycarbonate-Silica Mixed Matrix Membranes
    Authors: R. Sadeghi, S. Hassanajili
    Journal: Korean Journal of Chemical Engineering
    Year: 2024


  • Zoledronate loaded polylactic acid/polycaprolactone/hydroxyapatite scaffold accelerates regeneration and led to enhance structural performance and functional ability of the radial bone defect in rat
    Authors: A. Oryan, S. Hassanajili, S. Sahvieh
    Journal: Iranian Journal of Veterinary Research
    Year: 2023


Conclusion

Prof. Dr. Shadi Hassanajili represents an exceptional blend of academic brilliance, pioneering research, and institutional leadership. From her early academic pursuits in chemical and polymer engineering to her current role as a professor and innovator, she has consistently advanced the boundaries of knowledge. Her contributions in biomedical polymers, nanocomposites, and environmental applications reflect both scientific depth and societal relevance. Her career stands as a testament to the role of dedicated scholarship in driving innovation, inspiring students, and shaping industries.

 

Liping Liang | Environmental Science | Best Researcher Award

Prof. Liping Liang | Environmental Science | Best Researcher Award

Changzhou University | China

Author Profile

Scopus

Early Academic Pursuits 🎓

Prof. Liping Liang's journey in environmental science began with her Bachelor's and Master's degrees in Environmental Engineering from Lanzhou University of Technology, where she cultivated a strong foundation in water treatment and pollution control. She further advanced her expertise by earning a Ph.D. in Municipal Engineering from Harbin Institute of Technology in 2014, focusing on innovative water purification technologies. Her academic excellence and dedication to research positioned her as a leader in environmental engineering at an early stage in her career.

Professional Endeavors 🏛️

Prof. Liang's professional trajectory has been marked by significant contributions to academia and research institutions. She has served as an Associate Professor at Changzhou University (2023–Present) in the School of Environmental Science and Engineering, Associate Professor at Shaoxing University (2019–2023) in the School of Life Sciences, Lecturer at Shaoxing University (2014–2019) where she began shaping young minds in environmental science, and Postdoctoral Researcher at Donghua University (2021–2024), furthering her expertise in advanced material applications for environmental remediation.

Contributions and Research Focus 🔬

Prof. Liang's research primarily focuses on environmental pollution control, sustainable water treatment methods, and the use of novel materials for contaminant removal. Her work has significantly advanced the understanding and implementation of Nano Zero-Valent Iron (nZVI) Technology for heavy metal and radionuclide removal from water sources, Weak Magnetic Field-Enhanced Water Purification, exploring the synergy between magnetic fields and chemical reactions in pollutant degradation, Metal-Organic Framework (MOF)-Based Remediation, particularly MIL-101(Cr) for enhanced uranium (U(VI)) immobilization, and Fenton-Like Oxidation Systems for efficient dye wastewater treatment. Her interdisciplinary approach, combining chemistry, physics, and engineering, has led to novel solutions for environmental sustainability.

Accolades and Recognition 🏆

Prof. Liang's impactful research has earned her several prestigious awards and honors, including the Shanghai Provincial Second Prize (2024) for pioneering advancements in zero-valent iron water purification, the China Business Federation Science and Technology Progress Award (2022) for her contributions to eco-friendly textile treatment solutions, the National Natural Science Foundation Grant (2023–2026) for her work on MIL-101(Cr)-modified nZVI in radionuclide remediation, and the China Postdoctoral Science Foundation Grant (2021–2023) for her research on magnetic field-enhanced Fenton-like oxidation.

Impact and Influence 🌍

Prof. Liang’s work has significantly shaped the field of environmental remediation by introducing cost-effective and efficient water purification techniques. Her research has improved industrial water treatment processes, reducing environmental hazards from heavy metals and radioactive pollutants, enhanced scientific understanding of nano-material applications, leading to new innovations in pollution control, contributed to public health improvements, ensuring cleaner water for communities worldwide, and mentored and inspired future scientists, fostering the next generation of environmental engineers and researchers.

Legacy and Future Contributions 🚀

Prof. Liping Liang's legacy is defined by her commitment to solving global water contamination challenges through cutting-edge research. Looking ahead, she aims to expand her research on hybrid nanomaterial applications for sustainable environmental solutions, develop scalable water treatment technologies for large-scale industrial and municipal use, and strengthen international collaborations to advance environmental engineering on a global scale. With her unwavering dedication to research and innovation, Prof. Liang continues to pave the way for sustainable environmental practices, leaving a lasting impact on both academia and industry. Her contributions make her a highly deserving candidate for recognition as a leader in environmental science. 🌱🌍

 

Publications


  • 📄 Synergistic effect of MIL-101(Cr) and nanoscale zero-valent iron (nZVI) for efficient removal of U(VI) and assessment of this composite to inactivate Escherichia coli

    • Author(s): L. Liang (Liping), F. Xi (Fenfen), J. Zhao (Jinhui), S. Komarneni (Sridhar), J. Ma (Jianfeng)
    • Journal: Separation and Purification Technology
    • Year: 2025

  • 📄 Efficient U(VI) removal by Ti₃C₂Tₓ nanosheets modified with sulfidated nano zero-valent iron: Batch experiments, mechanism, and biotoxicity assessment

    • Author(s): L. Liang (Liping), M. Zhou (Mengfan), F. Xi (Fenfen), W. Yang (Wangliang), B. Hu (Baowei)
    • Journal: Journal of Environmental Sciences (China)
    • Year: 2025

  • 📄 Z-scheme heterojunction photocatalyst of LaFeO₃@CoS for tetracycline hydrochloride degradation by persulfate activation using visible light

    • Author(s): J. Zhan (Jiayu), L. Liang (Liping), Y. Lu (Ying), S. Komarneni (Sridhar), J. Ma (Jianfeng)
    • Journal: Ceramics International
    • Year: 2025

  • 📄 Efficient U(VI) removal from aerobic solution by synergistic interaction of nano zero-valent iron with g-C₃N₄ and assessment of toxicity to microorganisms

    • Author(s): L. Liang (Liping), F. Xi (Fenfen), M. Zhou (Mengfan), B. Hu (Baowei)
    • Journal: Journal of Water Process Engineering
    • Year: 2024

  • 📄 Weak magnetic field and coexisting ions accelerate phenol removal by ZVI/H₂O₂ system: Their efficiency and mechanism

    • Author(s): L. Liang (Liping), C. Bai (Chaoqi), Y. Zhang (Yuting), S. Komarneni (Sridhar), J. Ma (Jianfeng)
    • Journal: Chemosphere
    • Year: 2024

 

Mauro Zarrelli | Engineering | Best Researcher Award

Dr. Mauro Zarrelli | Engineering | Best Researcher Award

CNR - National Research Council, IPCB - Institue of POlymers, Composites and Biomaterials | Italy

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 🎓

Dr. Mauro Zarrelli's academic journey began at Federico II, Naples University, where he pursued a Master's Degree in Materials Engineering from 1993 to 1998. His final research project focused on analyzing fatigue properties and mechanical performance of structural composite materials based on polymer matrices. His dedication to advanced materials science led him to Cranfield University (UK), where he completed a PhD in 2002 under the supervision of Prof. Ivana K. Partridge. His doctoral research involved finite element modeling (FEM) of heat transfer and residual stresses in composite materials, contributing to innovations in thermosetting resin systems for aerospace applications.

Professional Endeavors 🏆

Dr. Zarrelli's career trajectory has been marked by significant professional advancements. In 2014, he received habilitation as an Associate Professor in Material Science and Technology (ING/IND-22) from the Italian Ministry of Education, University, and Research (MIUR). His growing expertise led to habilitation as a Full Professor in Aerospace Engineering (ING/IND-04) in 2022, and in 2023, he secured full professorship in Material Science and Technology (ING/IND-22). Additionally, he was recognized as a Chartered Engineer in Benevento province (2000–2018), solidifying his professional standing in engineering sciences.

Contributions and Research Focus 🔬

A leader in materials science and aerospace engineering, Dr. Zarrelli has made pioneering contributions in:

  • Polymer composites  (cure kinetics, rheology, mechanical properties)
  • Nanocomposites (MWCNT, graphene-reinforced polymers)
  • Energy harvesting systems
  • Aerospace and space materials
  • Fire resistance and thermal analysis
  • Structural performance assessment

His expertise extends to thermal analysis, microcalorimetry, mechanical testing, microscopy, and structural characterization techniques, making him a sought-after researcher in the field.

Accolades and Recognition 🏅

Dr. Zarrelli’s excellence in research has been recognized through multiple prestigious grants and awards:

  • 1997–1998: Grant for Final Degree Thesis from Italian Car Association and ELASYS (FIAT Group).
  • 1999–2001: Research Proposal Grant from AUDI Foundation, UK, for developing a novel Young’s Modulus measurement holder for thermosetting resins.
  • Invited Speaker at International Conferences , including SAMPE (1998), ECCM8 (1998), and AIMAT (1998).

Impact and Influence 🌍

As an expert reviewer for national and international research institutions, Dr. Zarrelli has played a vital role in evaluating projects for organizations like:

  • European Research Centre
  • French Research Agency
  • UK National Commission for UNESCO
  • Poland Narodowe Centrum Nauki
  • Romanian Ministry of Education
  • European Science Foundation

His insights have significantly influenced research funding, policy-making, and scientific advancements in nanotechnology, polymer composites, and aerospace materials.

Legacy and Future Contributions 🚀

With a career spanning over two decades, Dr. Mauro Zarrelli has made lasting contributions to materials science and aerospace engineering. His research on advanced composites, fire-resistant materials, and nanotechnology continues to shape the industry, ensuring safer, more efficient, and high-performance materials for aerospace, automotive, and energy applications. As a leading scientist in polymer physics and nanocomposites, Dr. Zarrelli is expected to drive future innovations in sustainable materials, intelligent structural monitoring, and next-generation aerospace systems. His work stands as a testament to the power of interdisciplinary research in shaping the future of engineering and material sciences.

 

Publications


📄 An Experimental Approach for Investigating Fatigue-Induced Debonding Propagation in Composite Stiffened Panels Using Thermographic Phase Mapping
Authors: A. Riccio, A. Russo, C. Toscano, M. Zarrelli
Journal: Polymers
Year: 2025


📄 Unstable Delamination Growth in Stiffened Composite Panels Under Cyclic Loading Conditions
Authors: R. Castaldo, A. Russo, M. Zarrelli, C. Toscano, A. Riccio
Journal: Polymers
Year: 2024


📄 The Effect of Carbon-Based Nanofillers on Cryogenic Temperature Mechanical Properties of CFRPs
Authors: A. Zotti, S. Zuppolini, A. Borriello, L. Trinchillo, M. Zarrelli
Journal: Polymers
Year: 2024


📄 Hierarchical Aerospace Epoxy Composites of Carbon Fiber and Hyperbranched Filler: Toughening Behavior from Nanocomposites to Composites
Authors: A. Zotti, S. Zuppolini, A. Borriello, V. Vinti, M. Zarrelli
Journal: Composite Structures
Year: 2024


📄 Impact-Dynamic Properties of Aromatic Hyperbranched Polyester/RTM6 Epoxy Nanocomposites
Authors: A.M. Elmahdy, N. Ghavanini, A. Zotti, A. Borriello, P. Verleysen
Journal: Materials Letters
Year: 2023


 

Wenbing Li | Materials Science | Editorial Board Member

Assoc Prof Dr. Wenbing Li | Materials Science | Editorial Board Member

Jiangnan university | China

Author Profile

Orcid

Early Academic Pursuits 🎓

Dr. Wenbing Li began his academic journey with a focus on materials science, leading him to pursue a Ph.D. at the prestigious Harbin Institute of Technology. Under the guidance of Prof. Jinsong Leng, an academician of the Chinese Academy of Sciences, he honed his expertise in shape memory polymer composites. His academic interests took him overseas in 2017 when he became a joint PhD student at the University of Colorado at Boulder, working under Prof. Yifu Ding, where he expanded his research capabilities and broadened his international academic exposure.

Professional Endeavors 🏛️

Dr. Li officially launched his professional career in 2019 when he joined Jiangnan University as an associate researcher in the College of Textile Science and Engineering. With a solid foundation in the innovative field of shape memory composites, his research has been centered on chemical structure design, improving material properties, and exploring advanced manufacturing techniques for polymer composites. His work in these areas positions him at the cutting edge of materials engineering.

Contributions and Research Focus 🔬

Specializing in shape memory polymer composites, Dr. Li's research addresses crucial aspects of material science, including the design of chemical structures and enhancing the functionality of polymers. His focus on developing innovative solutions has led to his work being published in top-tier journals such as Small, Chemical Engineering Journal, and Journal of Materials Chemistry A. His studies also explore the practical applications of these materials in fields like engineering and biomedicine, making his contributions significant to both academia and industry.

Accolades and Recognition 🏆

Dr. Li's research has been widely recognized in the scientific community, with numerous publications in highly respected journals, including ACS Applied Materials & Interfaces, Acta Biomaterialia, and Composites Part A. His collaborations with leading researchers and institutions like the University of Colorado have further established his reputation as a rising star in materials science. His achievements have garnered attention for their innovation and potential impact on various industries.

Impact and Influence 🌍

Dr. Li's work in the field of shape memory composites has significant implications, particularly in the development of advanced materials for use in technology, biomedicine, and textiles. His focus on enhancing material properties and discovering new applications for shape memory polymers has opened doors for practical applications that could transform industries. His research not only influences the scientific community but also contributes to innovations that could have a lasting impact on the global materials science field.

Legacy and Future Contributions 🚀

As Dr. Li continues his academic and research endeavors, his future contributions are poised to leave a lasting legacy in the field of polymer composites. His pioneering work in shape memory polymers has already laid the groundwork for future advancements, and his dedication to improving material science is likely to lead to further breakthroughs. With his ongoing research and publications, Dr. Li is set to influence future generations of researchers, creating a lasting impact on both academic and industrial applications of polymer science.

 

Publications


📄Poly(ethylene-co-vinyl acetate)/Fe3O4 with Near-Infrared Light Active Shape Memory Behavior 

  • Journal: Composites Communications
  • Year: 2024
  • Contributors: Zhiyong Zeng, Junhao Liu, Feng Cao, Hongmei Chen, Kun Qian, Wenbing Li

📄Shape Memory Polymer Micropatterns with Switchable Wetting Properties 

  • Journal: European Polymer Journal
  • Year: 2023
  • Contributors: Junhao Liu, Wanting Wei, Feng Cao, Zhiyong Zeng, Kun Qian, Hongmei Chen, Fenghua Zhang, Wenbing Li

📄Poly(acrylic acid)-Assisted Intrafibrillar Mineralization of Type I Collagen: A Review 

  • Journal: Macromolecular Rapid Communications
  • Year: 2023
  • Contributors: Lei Chen, Zhiyong Zeng, Wenbing Li

📄Ultrathin Flexible Electrospun EVA Nanofiber Composite with Electrothermally-Driven Shape Memory Effect for Electromagnetic Interference Shielding 

  • Journal: Chemical Engineering Journal
  • Year: 2022
  • Contributors: Wanting Wei, Pengfei Zhang, Feng Cao, Junhao Liu, Kun Qian, Diankun Pan, Yongtao Yao, Wenbing Li

📄Recent Advances and Perspectives of Shape Memory Polymer Fibers 

  • Journal: European Polymer Journal
  • Year: 2022
  • Contributors: Wanting Wei, Junhao Liu, Jian Huang, Feng Cao, Kun Qian, Yongtao Yao, Wenbing Li

 

Thi Sinh Vo | Materials Science | Excellence in Research Award

Dr. Thi Sinh Vo | Materials Science | Excellence in Research Award

Sungkyunkwan University | South Korea

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 🎓

Dr. Thi Sinh Vo's academic journey began with a Bachelor of Science in Materials Science from HCM City University of Science, Vietnam, where she developed a strong foundation in polymer and composite materials. She further honed her expertise with a Master’s degree in Chemical Engineering at Daegu University, South Korea, focusing on the synthesis and characterization of advanced materials. Her academic excellence continued with a Ph.D. in Mechanical Engineering from Sungkyunkwan University, where her thesis on chitosan-based functional composites showcased her innovative approach to materials science.

Professional Endeavors 🛠️

Dr. Vo has a diverse range of professional experiences, from working as a chemical engineer to leading research projects in prestigious labs. Her roles have included the design and synthesis of composite materials, developing innovative solutions for water-based adhesives, and optimizing manufacturing processes. Her postdoctoral research at Sungkyunkwan University has further solidified her position as a leading expert in polymer-composite materials, where she continues to contribute to cutting-edge research.

Contributions and Research Focus 🔬

Dr. Vo's research focuses on the synthesis, characterization, and application of advanced polymeric and composite materials. She has made significant contributions in areas such as electromechanical and electrochemical sensors, human motion sensing, and organic dye removal for wastewater treatment. Her interdisciplinary work integrates materials science with engineering and environmental science, resulting in impactful outcomes that push the boundaries of what is possible in these fields.

Accolades and Recognition 🏆

Dr. Vo's dedication to research has been recognized with several prestigious awards. She has received the Best Paper Award, the Best Researcher Award, and the Excellence Award for Poster Presentation, among others. These accolades highlight her contributions to the field of materials science and her commitment to advancing knowledge through rigorous research and innovation.

Impact and Influence 🌍

Dr. Vo's work has had a significant impact on the field of materials science, particularly in the development of functional composites for sensors and environmental applications. Her research has been published in top-tier journals, and she is a sought-after reviewer for various scientific publications. Her ability to mentor and lead research teams has also fostered a collaborative environment that encourages innovation and knowledge sharing.

Legacy and Future Contributions 🌟

Dr. Vo's legacy is one of innovation, leadership, and a relentless pursuit of excellence in materials science. As she continues her research, she is poised to make even more significant contributions to the field, particularly in the development of new materials for sensors and environmental applications. Her future work will undoubtedly continue to influence and inspire researchers around the world.

 

Publications


📄 3D Porous Sponge-like Sensors Prepared from Various Conductive Nanohybrids-filled Melamine Sponge Toward Human Motion Detections
Authors: Vo, T.S., Nguyen, T.S., Lee, S.-H., Kim, K.
Journal: Journal of Materials Research and Technology
Year: 2024


📄 Hybrid Film-like Strain Sensors Prepared from Polydimethylsiloxane-covered 3D Porous Network Sponges Toward Human Motion Detection
Authors: Vo, T.S., Nguyen, T.S., Lee, S.-H., Kim, K.
Journal: Applied Materials Today
Year: 2024


📄 Natural Bamboo Powder and Coffee Ground as Low-cost Green Adsorbents for the Removal of Rhodamine B and Their Recycling Performance
Authors: Vo, T.S., Hossain, M.M., Kim, K.
Journal: Scientific Reports
Year: 2023


📄 Realization of Motion Sensing Composites Prepared from the Incorporation of Three-dimensional Porous Conductive Foams and Polydimethylsiloxane
Authors: Vo, T.S., Nguyen, T.S., Lee, S.-H., Kim, D., Kim, K.
Journal: Journal of Science: Advanced Materials and Devices
Year: 2023


📄 Crosslinked 3D Porous Composite Foams as Adsorbents for Efficient Organic Dye Removal
Authors: Vo, T.S., Hossain, M.M., Lee, J., Suhr, J., Kim, K.
Journal: Environmental Technology and Innovation
Year: 2023


 

Hathaikarn Manuspiya | Materials Science | Best Researcher Award

Prof Dr. Hathaikarn Manuspiya | Materials Science | Best Researcher Award 

The Petroleum and Petrochemical College, Chulalongkorn University | Thailand

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Hathaikarn Manuspiya embarked on her academic journey with a Bachelor's degree in Materials Science from Chulalongkorn University, Bangkok, Thailand, in 1994. She continued her studies in Polymer Science, earning a Master's degree from the Petroleum and Petrochemical College, Chulalongkorn University, in 1997. Pursuing her passion for materials engineering, Dr. Manuspiya received her Ph.D. from Pennsylvania State University, USA, in 2003, focusing on advanced materials science and engineering.

Professional Endeavors

Dr. Manuspiya's professional career is marked by a series of significant roles. From 2003 to 2004, she was a Visiting Researcher at the Materials Research Institute, Pennsylvania State University. She then joined the Petroleum and Petrochemical College at Chulalongkorn University as a Lecturer in 2004, progressing to Assistant Professor by 2006, Associate Professor by 2016, and finally Professor of Polymer Technology in 2018. Her administrative acumen is reflected in her roles as Associate Dean for Research Affairs (2012-2016) and Deputy Director (2016-2020) before becoming the Director of the Center of Excellence on Petrochemical and Materials Technology (PETROMAT) in 2021.

Contributions and Research Focus

Dr. Manuspiya's research is extensive and impactful, spanning ultrasonics, spectroscopy, molecular docking, and density functional theory. Her work in bacterial cellulose, advanced nanomaterials, and bio-additives has led to significant advancements in food packaging, energy storage, and biotechnology. She has led over 50 research projects with substantial funding and has mentored numerous Ph.D. and Master's students, contributing to the academic and professional growth of future scientists.

Accolades and Recognition

Throughout her career, Dr. Manuspiya has received numerous prestigious awards. Notable recognitions include the L'Oréal Thailand “For Women in Science” Fellowship (2011), Honorable Mention Awards from BioPlastics Innovation Contest (2016), and the Most Outstanding in Teaching Award by Chulalongkorn University (2016). In 2023, she was elected to the University Council of Phetchabun Rajabhat University and has been a vital member of various national and international committees.

Impact and Influence

Dr. Manuspiya's influence extends beyond her research. She has significantly contributed to open science through organizing conferences, panel discussions, and science exhibitions. Her consultancy work has facilitated the development of new polymer compounds and innovative industrial solutions, enhancing the practical applications of her research.

Legacy and Future Contributions

Dr. Manuspiya’s legacy is characterized by her dedication to advancing materials science and fostering the next generation of researchers. Her future contributions are expected to continue shaping the fields of petrochemical and polymer technology, with ongoing research projects aimed at sustainable and innovative solutions for industrial and environmental challenges.

 

Notable Publications

Fabrication of a colorimetric film based on bacterial cellulose/metal coordination framework composite for monitoring food spoilage gas 2023 (5)

Enabling high dielectric constant and low loss tangent in BaTiO3–epoxy composites through a 3D interconnected network structure of ceramic phase 2023 (1)

Superhydrophilic bacterial cellulose membranes efficiently separate oil-in-water emulsions 2023 (3)

Nanocomposite films of PLA/PBAT blends incorporated with porous clay heterostructure from mixed surfactant systems and their effect of temperature and pressure on dielectric properties 2023 (1)

Improvement of compatibility, mechanical, thermal and dielectric properties of poly(lactic acid) and poly(butylene adipate‐co‐terephthalate) blends and their composites with porous clay heterostructures from mixed surfactant systems 2022 (3)

 

 

 

Muhammad Rajibul Haque Akanda |Chemistry | Best Researcher Award

Assoc Prof Dr. Muhammad Rajibul Haque Akanda |Chemistry | Best Researcher Award

Jagannath University | Bangladesh

Author Profile

Scopus

Orcid

Early Academic Pursuits

Dr. Muhammad Rajibul Haque Akanda's academic journey began at Dhaka University, Bangladesh, where he obtained his B.Sc. (Hon’s) in Chemistry with minors in Physics and Mathematics in 2005. He excelled in his studies, earning a 1st Class result. Following his undergraduate degree, he pursued an MS in Organic Chemistry from Dhaka University, which he completed in 2007. Under the supervision of Professor Giasuddin Ahmed, he worked on the synthesis of potential bio-active spiroketals. His passion for research led him to Pusan National University in South Korea, where he earned his Ph.D. in Analytical Chemistry in 2013, focusing on nonenzymatic redox cycling for ultrasensitive electrochemical biosensors under the guidance of Professor Haesik Yang.

Professional Endeavors

Dr. Akanda's professional career is marked by significant roles in academia and editorial positions. He began his teaching career as a Lecturer in the Department of Chemistry at Jagannath University, Dhaka, in 2013. His dedication and expertise earned him promotions to Assistant Professor in 2015 and Associate Professor in 2020. Dr. Akanda's academic career is complemented by his post-doctoral research fellowships at prestigious institutions, including Pusan National University in South Korea and Nanjing University in China. He has also served as an associate editor for the International Journal of Petrochemical Science and Engineering (IPCSE) since 2016 and has been an editorial member of the International Journal of Green Chemistry and the International Journal of Analytical and Applied Chemistry since 2018.

Contributions and Research Focus

Dr. Akanda's research is centered on developing novel, commercially viable, and highly sensitive electrochemical sensors and biosensors. His work includes advancements in microfluidic biosensors and lateral flow bioassays using electrochemical redox cycling for the ultra-low detection of oligonucleotides, proteins, and various biomarkers. He is also engaged in the development of nanomaterials and nanocomposites through green technology, with applications in electro-catalysis and biomedicine. One of his notable future projects involves creating cost-effective, user-friendly portable POCT devices for use by untrained personnel in developing countries.

Accolades and Recognition

Throughout his career, Dr. Akanda has received numerous awards and fellowships in recognition of his outstanding research contributions. These include the Best Graduate Researcher Award from Pusan National University in 2013, several Best Oral and Poster Presentation Awards at international symposiums, and prestigious fellowships such as the BK21 Fellowship for Doctoral Study and the Nanjing University Fellowship for Post-Doctoral Research. His work has also led to multiple international and domestic patents related to electrochemical biosensors.

Impact and Influence

Dr. Akanda's research has significantly impacted the fields of electrochemical sensing and green synthesis. His innovations in biosensor technology have advanced the capabilities of diagnostic tools, contributing to improvements in biomedical applications. His commitment to green chemistry principles in developing nanomaterials underscores the importance of sustainable scientific practices. As a dedicated educator and researcher, Dr. Akanda has mentored numerous students and collaborated with international researchers, furthering the global exchange of knowledge and expertise.

Legacy and Future Contributions

Dr. Akanda's legacy is defined by his contributions to analytical chemistry and his efforts to bridge the gap between advanced research and practical applications. His work on developing accessible diagnostic tools holds the promise of improving healthcare in resource-limited settings. Moving forward, Dr. Akanda aims to continue his research in electrochemical sensors and nanotechnology, focusing on innovations that address pressing global challenges. His commitment to education and research excellence ensures that his influence will extend to future generations of scientists.

 

Notable Publications

Preparation of novel green adsorbent (Tabernaemontana divaricata leaf powder) and evaluation of its dye (malachite green) removal capacity, mechanism, kinetics, and phytotoxicity 2024

Binding Agents and Packaging Materials of Supercapacitors from Biomass 2023