Mert Gülüm | Engineering | Best Researcher Award

Assoc. Prof. Dr. Mert Gülüm | Engineering | Best Researcher Award

Karadeniz Technical University | Turkey

Assoc. Prof. Dr. Mert Gülüm is a leading researcher in alternative fuels, combustion, and thermophysical properties of fluids, with a prolific scholarly record of 32 documents, 931 citations, and an h-index of 18. His research focuses on diesel engines, bio-derived and hybrid fuels, nanofluids, and advanced modeling techniques to optimize fuel performance, combustion, and emission characteristics. Key contributions include studies on hydrogen use in diesel engines, viscosity-temperature modeling of alternative fuel blends, thermophysical analysis of nanofluids, and transesterification optimization of waste cooking oil for biodiesel production. His work has been published in top SCIE and ESCI journals, reflecting rigorous experimental, computational, and numerical approaches. With 644 documents contributing to his citation impact, Dr. Gülüm has significantly advanced knowledge in sustainable energy, fluid dynamics, and thermal analysis, offering practical insights for improving engine efficiency and developing environmentally friendly fuel technologies. His research continues to influence propulsion, energy, and environmental engineering communities worldwide.

 

Citation Metrics (Scopus)

1000

800

600

400

0

Citations
931

h-index
18

i10-index
23

Citations

h-index

i10-index


View Scopus Profile

Featured Publications

Mathematical Correlations for Variation in Heat Release Rate of a Diesel Engine Fuelled with n-Octanol Blends
– Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 2023

Olivier Delodji | Energy | Research Excellence Award

Mr. Olivier Delodji | Energy | Research Excellence Award

China University of Geosciences Faculty of Earth Resources | China

Mr. Olivier Delodji’s research focuses on numerical simulation and computational modeling applied to energy systems, with particular emphasis on CO₂-enhanced oil recovery (CO₂-EOR) and CO₂ sequestration in shale oil reservoirs. The current scholarly record includes 1 peer-reviewed journal article, published in Results in Engineering (2025), addressing coupled flow and storage mechanisms relevant to carbon management and unconventional reservoirs. Research activities demonstrate engagement with advanced simulation techniques, subsurface energy engineering, and sustainability-oriented geoscience applications. Scholarly development is further supported through active participation in international workshops, academic forums, and symposia on energy management, unconventional resources, and China–Africa geoscience cooperation. Overall, the research trajectory highlights a strong foundation in numerical modeling, interdisciplinary collaboration, and contribution to carbon sequestration and energy transition research.

View Orcid Profile

Featured Publication

Shima Sadaf | Electrical Engineering | Best Academic Researcher Award

Assist. Prof. Dr. Shima Sadaf | Electrical Engineering | Best Academic Researcher Award

King Faisal University | Saudi Arabia

Assist. Prof. Dr. Shima Sadaf is a highly accomplished researcher in materials science, nanotechnology, electrochemistry, and energy systems, with a strong publication record reflected in 486 citations, an h-index of 11, and an i10-index of 11, demonstrating the impact and consistency of her scientific contributions. Her research spans advanced materials synthesis, including nanomaterials, thin films, perovskites, and green-synthesized nanoparticles, with applications in electrocatalysis, supercapacitors, photocatalysis, energy storage, and environmental remediation. She has made notable advancements in designing electrocatalysts for hydrogen evolution reactions, developing high-performance supercapacitive materials, and creating photocatalysts capable of degrading pollutants and enhancing hydrogen production. Her work also extends to UV photodetectors, memristor technologies, and electrochemical sensors for detecting heavy metals, glucose, uric acid, and dopamine. In the field of energy systems, she has contributed to innovative DC–DC converters, voltage ripple reduction techniques, and sustainable power solutions for nanogrids and renewable energy integration. Her publications include significant contributions to journals in materials chemistry, ceramics, energy conversion, and semiconductor processing, covering topics such as green-synthesized TiO₂/rGO nanocomposites, lead-free perovskites for solar-driven water splitting, NiCo₂O₄-based electrocatalysts, and advanced transition-metal nanoparticles. Her research continues to advance sustainable materials and energy technologies with broad scientific and industrial relevance.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

Utami, M., Ramadhani, M. A., Purnama, I., Purwiandono, G., Yenn, T. W., Husniati, Sadaf, S., Al-Taisan, N. A., Almuhawish, N. F., Al-Farhan, A. M., et al. (2026). Green biogenic synthesis of Ag-loaded TiO₂/rGO nanocomposite and its prospective applications in antibacterial and self-cleaning surface coating. Materials Chemistry and Physics, 131573.

Khan, A. N., Rabhi, S., Khan, N. U., Ansari, S. A., Sadaf, S., & Alam, M. W. (2025). Harnessing solar energy with lead-free Tl₂BPI₆ (B = Cs, Rb) double perovskites for photocatalytic water splitting. Ceramics International.

Ghubayra, R., Shariq, M., Sadaf, S., Almuhawish, N. F., Iqbal, M., & Alam, M. W. (2025). Constructing a hybrid CuO over bimetallic spinal NiCo₂O₄ nanoflower as electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy.

Kaur, H., Sharma, A., Kumar, S., Alam, M. W., Sadaf, S., & Al-Othoum, M. A. S. (2025). Evaluation of photocatalytic efficacy of biosynthesized cubic NiFe₂O₄ nanoparticles. Nano.

Alam, M. W., Kharade, R. B., Alsulaim, G. M., Aleithan, S. H., Sadaf, S., Chava, R. K., Shin, D.-K., & Yewale, M. A. (2025). Improved Ni₃V₂O₈ supercapacitive performance via urea-driven morphological alteration. Ceramics International.

Yewale, M. A., Shin, D. K., Alam, M. W., Teli, A. M., Nabi, S., Ansari, S. A., Sadaf, S., & Al-Kahtani, A. A. (2024). Controlled synthesis and electrochemical characterization of Co₃V₂O₈ hexagonal sheets for energy storage applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects.

Alam, M. W., Nivetha, A., BaQais, A., Ansari, S. A., Yewale, M. A., & Sadaf, S. (2024). Development and analysis of novel Sm-doped LaSiO for photocatalytic degradation and electrochemical sensing of heavy metals. Ceramics International.

Alam, M. W., Ambikapathi, R., Nabi, S., Nivetha, A., Abebe, B., Almutairi, H. H., Sadaf, S., & Almohish, S. M. (2024). Advancements in green-synthesized transition metal/metal-oxide nanoparticles for sustainable wastewater treatment: Techniques, applications, and future prospects. Materials Research Express.

Aldughaylibi, F. S., Ulla, H., Allag, N., Alam, M. W., BaQais, A., Al-Othoum, M. A. S., & Sadaf, S. (2024). Development of molybdenum trioxide–based modified graphite sheet electrodes for enhancing the electrochemical sensing of dopamine. Materials Science in Semiconductor Processing.

Kumar, J. V., Alam, M. W., Selvaraj, M., Almutairi, H. H., Albuhulayqah, M., Sadaf, S., Dhananjaya, M., & Joo, S. W. (2024). Fluorescent carbon dots for biodiesel production: A comprehensive review (2019–2024). Inorganic Chemistry Communications.

Alam, M. W., Allag, N., Utami, M., Waheed-Ur-Rehman, M., Al-Othoum, M. A. S., & Sadaf, S. (2024). Facile green synthesis of α-bismuth oxide nanoparticles: Its photocatalytic and electrochemical sensing of glucose and uric acid in an acidic medium. Journal of Composites Science.

Kaveh Kolahgar Azari | Materials Science | Best Researcher Award

Mr. Kaveh Kolahgar Azari | Materials Science | Best Researcher Award

University of Seville | Spain

Author Profile

Google Scholar

Early Academic Pursuits

From the beginning of his academic journey, Mr. Kaveh Kolahgar Azari demonstrated exceptional aptitude for materials engineering, excelling in both composite materials and metallurgy. His formal studies established a strong foundation in advanced material science, with a particular focus on composites and coatings. His early theses in hybrid epoxy composites and layered nanocomposites revealed not only his technical precision but also his ability to connect theoretical principles with industrial applications. His academic training combined with international research experiences prepared him for a career that bridges innovation and real-world impact.

Professional Endeavors

Mr. Azari’s professional pathway reflects a seamless blend of teaching, research, and industrial application. He has served as a research assistant professor, guiding projects in casting, heat treatment, and composite materials. His work at leading research centers enabled him to contribute to groundbreaking projects on superalloys, ceramic crucibles, and advanced coatings. Alongside research, he has shared his expertise with students through teaching courses on welding and materials processing, ensuring that future generations of engineers inherit both technical rigor and innovative thinking.

Contributions and Research Focus

His research contributions span a wide range of themes central to materials science. Mr. Azari has explored the mechanical, thermal, and corrosion properties of composites, with an emphasis on ceramic coatings and nanostructured materials. His studies on spark plasma sintering techniques for yttria-stabilized zirconia coatings opened pathways for improved high-temperature applications. He has also worked on radar-absorbing nanocomposites, corrosion-resistant coatings, and bio-inspired hybrid composites. These works underline his deep commitment to solving complex challenges in aerospace, defense, and energy sectors through advanced materials research.

Accolades and Recognition

The quality and depth of Mr. Azari’s work have earned him wide recognition. He has been honored as a top researcher and inventor at both national and institutional levels. His inventions in composite design and hybrid materials have been recognized by elite scientific bodies, reflecting his capacity for innovation. Prestigious awards for research excellence, innovation, and academic performance further establish his reputation as a leading figure in his field. His success is not only measured by titles but by the respect he commands among peers for his contributions to advancing material technologies.

Impact and Influence

Mr. Azari’s influence extends beyond publications and patents into practical industrial advancements. His collaborative research has enhanced the production and performance of superalloys, thermal barriers, and advanced composites. His innovations in fracture toughness, hybrid epoxy designs, and high-performance ceramics have provided tangible benefits to aerospace and manufacturing industries. Moreover, his participation in national and international conferences highlights his role in shaping scholarly discussions and mentoring young researchers.

Legacy and Future Contributions

Looking ahead, Mr. Azari is poised to leave a lasting legacy in the field of advanced materials. His body of work already serves as a cornerstone for research in composites and coatings, while his collaborative projects promise to inspire future explorations in nanomaterials and energy-efficient technologies. His ongoing research in plasma-catalytic processes, cloud seeding materials, and sustainable composites reflects his forward-looking vision of science as a solution to global challenges. His legacy will be defined not only by scientific discoveries but also by his dedication to building bridges between academia, industry, and innovation.

Publications


Enhancement of High Temperature Properties and Adhesion of Yttria-Stabilized Zirconia Thermal Barrier Coating on Inconel 713lc Superalloy Using Spark Plasma Sintering Method

    • Authors: Kaveh Kolahgar Azari, Ali Alizadeh, Hossein Momeni, Ángela Gallardo López

    • Journal: Surface and Coatings Technology

    • Year:  2025


Optimization of Microhardness in Nanostructured Thermal Barrier Coatings Using Spark Plasma Sintering (SPS) and Taguchi Design

    • Authors: Kaveh Kolahgar Azari, Ali Alizadeh, Hossein Momeni, Angela Maria Gallardo Lopez

    • Journal: Advanced Ceramics Progress (ACERP)

    • Year:  2024


Investigating the Phenomenon of Flutter, Mechanical and Microstructural Properties of Layered Composite of Aluminum Sheet with an Epoxy Matrix Reinforced with Carbon Fibers

    • Authors: Kaveh Kolahgar Azari, Amir Hossein Sayadi Kelemi, Ali Alizadeh, Hamid Omidvar

    • Journal: Advanced Ceramics Progress (ACERP)

    • Year:  2023


An Investigation on Dynamical and Mechanical Properties of Hybrid Composite of Epoxy Matrix Reinforced with S-glass Fiber and Aluminum Sheet

    • Authors: K. Kolahgar Azari, A. Alizadeh, H. Omidvar, A. Sayadi Kelemi

    • Journal: Journal of Environmental Friendly Materials (Scientific Research)

    • Year:  2023


Investigating Research on Improving Oxidation Resistance and Erosion Properties of ZrB₂/SiC Composites

    • Authors: K. Kolahgar Azari, A. Alizadeh, A. Sayadi

    • Journal: Journal of Environmental Friendly Materials (Scientific Research)

    • Year: 2023


Conclusion

Mr. Kaveh Kolahgar Azari exemplifies the qualities of a researcher whose contributions resonate across both academic and industrial landscapes. His academic brilliance, innovative research, and commitment to advancing material technologies position him as a leader in his field. Through his sustained efforts, he continues to enrich the scientific community while addressing pressing global challenges. His journey reflects not just personal success but a broader mission to transform research into meaningful societal impact.

Hyunchul Ju | Engineering | Best Researcher Award

Prof. Dr. Hyunchul Ju | Engineering | Best Researcher Award

Inha University | South Korea

Author Profile

Scopus

Orcid

Google Scholar

🌱 Early Academic Pursuits

Prof. Dr. Hyunchul Ju embarked on his academic journey in Mechanical Engineering at Inha University in South Korea, earning his B.S. in 1999 . His quest for advanced knowledge took him to the United States, where he completed his M.S. at the University of Nevada, Reno in 2001, and later achieved his Ph.D. at The Pennsylvania State University in 2006. His early research laid the foundation for a lifelong dedication to innovation in fuel cells and hydrogen energy systems .

🧑‍🏫 Professional Endeavors

Prof. Ju’s academic career spans multiple prestigious institutions. After a post-doctoral stint at Penn State, he held faculty positions at Chungju National University and later joined Inha University, where he rose to the rank of Professor in 2018. His roles have included Associate Dean of Engineering and Director of key research centers focused on carbon neutrality and hydrogen-based mechanical systems. His international experience includes time as a visiting scholar at LBNL (USA), adding global dimension to his scientific leadership.

🧪 Contributions and Research Focus

Prof. Ju is a world-renowned authority on fuel cells, electrolysis, hydrogen storage, and battery systems. He has pioneered the modeling and optimization of electrochemical systems and developed cutting-edge technologies for lightweight fuel cell components, MEAs, and carbon composites. His work integrates machine learning, CFD, and FEM techniques to enhance performance and durability. He has secured major research funding from institutions like Hyundai and the National Research Foundation of Korea, proving his leadership in sustainable energy technologies.

🏆 Accolades and Recognition

Prof. Ju has received over 20 prestigious awards, including multiple Best Paper and Best Presentation Awards from respected Korean and international societies. He has been honored for his outstanding research contributions by Inha University, and received the Most Cited Paper Award from International Journal of Heat and Mass Transfer. His dedication and excellence have earned him recognition as a thought leader in energy research.

🌍 Impact and Influence

Beyond academia, Prof. Ju serves in key editorial and leadership roles: Editor-in-Chief of KHNES, Associate Editor at ASME JEECS, and Vice President of KSFM and KSME. He has mentored over 50 graduate students, many of whom now work at top-tier organizations such as Samsung, LG, Hyundai, and SK Innovation. His influence is seen in both academic research and industrial innovation, especially in Korea’s clean energy sector.

🔮 Legacy and Future Contributions

Prof. Hyunchul Ju’s legacy is marked by his pioneering role in hydrogen energy and electrochemical systems development. He led the world’s first DMFC-powered UAV demonstration, introduced novel cold-start technologies now used globally, and continues to develop high-efficiency systems for next-generation fuel cells. With multiple patents and a focus on carbon-neutral technologies, he is set to shape the future of sustainable mechanical systems for years to come.

Publications


📄Innovative flow field design strategies for performance optimization in polymer electrolyte membrane fuel cells

  • Authors: Not specified

  • Journal: Applied Energy

  • Year: 2025


📄Reliability-based design optimization methodology for enhancing performance and efficiency in catalyst manufacturing for polymer electrolyte membrane fuel cells

  • Authors: Not specified

  • Journal: Energy Conversion and Management

  • Year: 2024


📄Cathode-supported SOFCs enabling redox cycling and coking recovery in hydrocarbon fuel utilization

  • Authors: Not specified

  • Journal: Chemical Engineering Journal

  • Year: 2024


📄Ultrahigh Electrode Performance of Low-Loaded Iridium Jagged Nanotubes for Water Electrolysis Applications

  • Authors: Not specified

  • Journal: Advanced Energy Materials

  • Year: 2024


 

Tazebew Dires Kassie | Engineering | Editorial Board Member

Mr. Tazebew Dires Kassie | Engineering | Editorial Board Member

Debre Markos University | Ethiopia

Author profile

Scopus

Orcid

🌱 Early Academic Pursuits

Mr. Tazebew Dires Kassie's journey into the realm of mechanical engineering began at Debre Markos University, where he earned his Bachelor’s degree in Mechanical Engineering in 2016 with an impressive GPA of 3.8/4.0. Fueling his passion for sustainability and innovation, he pursued a Master’s in Sustainable Energy Engineering from Bahir Dar University, graduating in 2021 with a perfect CGPA of 4.0/4.0. His thirst for continuous learning has since led him to expand his expertise through multiple Nano Degrees in Artificial Intelligence, Data Science, Android Development, and Programming Fundamentals from Udacity Online, and a Master Class in Online Teaching from Arizona State University.

🧑‍🏫 Professional Endeavors

Mr. Tazebew has been a dedicated academic and engineering professional since 2016, serving as a Lecturer at Debre Markos University. His leadership skills were further recognized when he was appointed Head of the Mechanical Engineering Department in 2024, where he now oversees academic programs, faculty development, research innovation, and strategic planning. Beyond academia, his early industry experience as a Maintenance Technician at Dashen Brewery S.C. in 2015 provided a strong foundation in preventive maintenance, machinery troubleshooting, and operational efficiency.

🔬 Contributions and Research Focus

Mr. Tazebew’s research contributions lie at the intersection of renewable energy systems, thermoelectric modules, and sustainable mechanical solutions. His notable studies include optimizing stove waste heat recovery using evaporative cooling, investigating CuO-water nanofluids in thermal systems, and analyzing performance parameters of direct evaporative coolers. His publications are featured in top-tier journals such as Springer – Energy Systems, Elsevier – Journal of Thermofluids, and Case Studies in Thermal Engineering. He has published five research papers, many of which are in press, and led two funded projects as a Principal Investigator.

🏅 Accolades and Recognition

Throughout his academic and professional career, Mr. Tazebew has received multiple awards that reflect his innovation and community dedication. He earned the Best BSc Thesis Award from Debre Markos University and received formal recognition for designing and manufacturing 6 wheelchairs with integrated toilet and shower services, and a shoeshine boy’s working shade, improving both accessibility and dignity. His outreach and project work have also earned him six certificates for community engagement, especially in aiding people with disabilities.

🌍 Impact and Influence

Mr. Tazebew’s work goes beyond the confines of classrooms and labs. His community-oriented engineering solutions highlight the practical application of sustainable technologies to address local needs. As a speaker and presenter at forums such as the Ethiopian Society of Mechanical Engineering and national research conferences, he continues to inspire peers and students alike with innovations in energy-efficient systems and design thinking. His teaching integrates real-world challenges with engineering fundamentals, empowering future professionals with critical problem-solving skills.

🔮 Legacy and Future Contributions

Mr. Tazebew Dires Kassie stands as a beacon of innovation and community-driven engineering in Ethiopia. With his growing expertise in AI, data science, and digital technologies, he is poised to bridge traditional mechanical engineering with cutting-edge interdisciplinary approaches. As he continues to lead his department and expand his research portfolio, his legacy is one of sustainable impact, academic excellence, and inclusive design. The future holds promise for more transformative projects and leadership in green energy solutions, smart technologies, and engineering education reform.

Publications


📄  Design and Fabrication of a Multi-Terrain Triphibian Quadcopter for Airborne, Terrestrial, and Aquatic Mobility
Author: Tazebew Dires Kassie
Journal: Journal of Intelligent & Robotic Systems
Year: 2025


📄  Experimental Investigation of Air Velocity, Water Flow Rate and Staging of Cooling Pad on the Performance of Direct Evaporative Coolers
Authors: Tazebew Dires Kassie, Yaregal Eneyew Bizuneh
Journal: International Journal of Air Conditioning and Refrigeration
Year: 2025


📄  Numerical Studies on Thermo-Hydraulic Performance of Solar Air Heater with Quarter-Circle Roughness Ribs
Authors: Tazebew Dires Kassie, Yaregal Eneyew, Amare Merfo
Journal: Results in Engineering
Year: 2025


📄  Numerical Investigation on Heat Transfer of CuO-Water Nano-Fluid in a Circular Pipe with Twisted Tape Inserts
Authors: Tazebew Dires Kassie, Yaregal Eneyew Bizuneh, Endalkew Berhie Gebresilassie, Atalay Enyew Bizuneh
Journal: International Journal of Thermofluids
Year: 2025


📄 Enhancing a Thermoelectric Power Generation System’s Efficiency from a Stove’s Waste Heat by Optimizing the Heat Sink Temperature Junction Using a Direct Evaporative Cooler
Authors: Bimrew Admasu, Tazebew Dires Kassie, Getu Alemayehu Melas, Hailemariam Mulugeta, S. Nagarajan
Journal: Energy Systems
Year: 2025


Gabriel Roeder | Environmental Science | Best Researcher Award

Mr. Gabriel Roeder | Environmental Science | Best Researcher Award

Technical University of Munich| Germany

Author Profile

Orcid

👨‍🎓 Early Academic Pursuits

Gabriel José Roeder began his academic journey with a global perspective. After completing high school in Brazil and a senior year in Australia, he pursued Chemical and Process Engineering at the Karlsruhe Institute of Technology. He further specialized in Chemical Process Technology at Technical University of Munich (TUM), where he earned his Master’s degree with research on hydrogen transfer reactions. Currently, he is finalizing his Ph.D. (Dr.-Ing.) at TUM in the Chair of Energy Systems, focusing on nitrogen oxide emissions in biomass combustion—a topic crucial for sustainable energy.

🧪 Professional Endeavors

Gabriel has built a strong foundation in applied research and industrial engineering. He has worked as a Research Associate at TUM from 2021 to 2025, playing a central role in the OptiNOx project (FKZ 2219NR211). His responsibilities included designing and operating a 50 kW test rig, conducting emission measurements in power plants, and managing a €640,000 research budget. In July 2025, he joined Stadtwerke München Services GmbH as a Process and Plant Engineer for power plants, taking his academic expertise directly into the energy sector.

🔬 Contributions and Research Focus

Mr. Roeder’s research is dedicated to advancing sustainable combustion technologies. His key interests lie in:

  • 🔹 Nitrogen oxide reduction strategies

  • 🔹 Biomass combustion efficiency

  • 🔹 Hydrogen transfer reactions

  • 🔹 Carbon capture technologies

He has delivered presentations at major European conferences such as the European Biomass Conference, Kraftwerktechnisches Kolloquium, and the European Conference on Industrial Furnaces and Boilers. He also co-authored a publication in ACS Catalysis (2021) on hydrogenation mechanisms, contributing to green chemistry and catalytic process design.

🏅 Accolades and Recognition

Gabriel’s interdisciplinary expertise and academic rigor have been recognized through:

  • ➤Peer-reviewed journal publication in a high-impact journal (ACS Catalysis)

  • ➤Speaking engagements at international conferences in Austria, Italy, Portugal, and Germany

  • ➤His appointment to leading roles in both academic and industrial energy projects

🌍 Impact and Influence

Fluent in Portuguese, German, English, Spanish, and with a working knowledge of French, Gabriel’s multilingual and multicultural background enhances his collaboration skills across borders. His work contributes directly to the development of cleaner energy solutions, making him a valuable asset to both academic institutions and the power generation industry.

🔮 Legacy and Future Contributions

As he transitions from academia to the energy sector, Mr. Roeder is well-positioned to influence the next generation of low-emission power systems. His combination of experimental skill, financial oversight, and multilingual communication ability sets him apart as a future leader in sustainable energy engineering. With continued focus on innovation and collaborative development, his career promises impactful contributions to the decarbonization of industrial power generation.

Publications


📄  Measurements of NOx emissions from biomass combustion in small to large-scale power plants
Authors: Gabriel J. Roeder, Johannes Haimerl, Yusheng Chen, Matthias Gaderer, Sebastian Fendt, Hartmut Spliethoff
Journal: Fuel
Year: 2025


📄  Selective Heterogeneous Transfer Hydrogenation from Tertiary Amines to Alkynes
Authors: Gabriel J. Roeder, H. Ray Kelly, Guoju Yang, Thomas J. Bauer, Gary Haller, Victor Batista, Eszter Barath
Journal: ACS Catalysis
Year: 2021


Koat Jing Riek | Engineering | Editorial Board Member

Mr. Koat Jing Riek | Engineering | Editorial Board Member 

Gambella University | Ethiopia

Author Profile

Orcid

🎓 Early Academic Pursuits

Mr. Koat Jing Riek began his academic journey with a Bachelor of Science in Mechanical Engineering from Hawassa University in 2015. He further honed his expertise by earning an MSc in Sustainable Energy Engineering from Jimma Institute of Technology, where his thesis focused on a GIS-based site suitability analysis of non-wooden biomass solar-driven briquetting plants in Gambella Regional State. His academic path reflects a deep-rooted interest in sustainable energy solutions tailored to regional needs.

💼 Professional Endeavors

Mr. Koat has carved a multidimensional career in academia, consultancy, and public service. Since 2017, he has served as a Senior Lecturer at Gambella University, leading vital research and community development initiatives in the fields of energy and environment.

His professional journey includes key roles such as:

  • Technical Expert at Minilek Kefale Economic Development Consultancy, where he assessed biomass resources and facilitated cooperative development.

  • Consulting Engineer for the Development Response to Displacement Impacts Project (DRDIP), delivering training and designing energy solutions for remote communities.

  • Fuel Administrator at Ethio Telecom and Office Engineer-Energy at Gambella Water and Energy Bureau.

  • WASH Foreman with NRC, ensuring sanitation and hygiene in refugee camps.

🔬 Contributions and Research Focus

Mr. Koat’s research and fieldwork bridge the gap between academia and community needs. His focus lies in:

  • Biomass energy systems and briquetting plant development

  • Improved cook stoves and solar energy solutions

  • Community-based training on climate change and environmental protection

  • Technical specification generation for sustainable energy products

His published work in the journal "The Future of Energy, Power and Environment" showcases his scientific rigor and commitment to evidence-based solutions.

🏅 Accolades and Recognition

Mr. Koat’s dedication to sustainable development has been widely recognized:

🏆 Certificates of appreciation for training delivery on solar irrigation and improved cook stoves
🏆 Awarded by DRDIP and Minilek Kefale Consultancy for technical expertise in community empowerment
🏆 Certified in GIS mapping, electromechanical troubleshooting, and water safety planning by institutions like UNHCR and Jimma Institute of Technology

🌍 Impact and Influence

Mr. Koat’s efforts have directly improved the livelihoods of communities in Gambella Region, especially through:

🌱 Establishing cooperatives for clean energy products
🔋 Training local stakeholders on solar technologies and energy efficiency
🏘️ Empowering underserved populations to adopt renewable energy systems

He stands as a catalyst for sustainable development through practical engineering, grassroots engagement, and academic leadership.

🔮 Legacy and Future Contributions

Looking ahead, Mr. Koat aims to scale sustainable energy initiatives across Ethiopia and beyond. His long-term vision is to bridge academia, policy, and community innovation to combat climate change and energy poverty. Through ongoing mentorship, research, and consultancy, Mr. Koat Jing Riek is poised to inspire a new generation of engineers and changemakers committed to a greener, more resilient future.

Publications


📄 Multi-criteria decision analysis using GIS in assessing suitability for a solar-powered biomass briquetting plant in the Gambella region, Ethiopia

Authors: Koat Jing Riek, Wondwossen Bogale Eremed

Journal: Trees, Forests and People

Year: 2025


Lixing Zheng | Energy | Best Researcher Award

Dr. Lixing Zheng | Energy | Best Researcher Award

PowerChina Chongqing Engineering Co., Ltd | China

Author Profile

Scopus

Early Academic Pursuits 🎓

Dr. Lixing Zheng’s academic journey began at the South China University of Technology, where he earned both his bachelor’s (2016) and master’s degrees (2019) in Mechanical and Electrical Engineering. His passion for energy research led him to pursue a PhD at the Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (2019–2023), where he focused on hydrogen energy production and low-carbon scenario analysis. His doctoral research laid the foundation for groundbreaking studies in hydrogen energy efficiency, carbon emissions, and energy transformation strategies.

Professional Endeavors 🏢

After completing his PhD, Dr. Zheng transitioned into postdoctoral research at PowerChina Chongqing Engineering Co., Ltd. in December 2023. His work continues to address critical energy challenges, focusing on hydrogen energy production, life cycle assessment (LCA) models, and low-carbon development pathways. He has also collaborated with prominent institutions and industry leaders, including the Chinese Academy of Engineering, Shanghai Electric Group, and Honda R&D China Co., Ltd., contributing to key projects in sustainable energy and industrial innovation.

Contributions and Research Focus 🔬

Dr. Zheng’s research spans multiple areas in sustainable energy, with a strong emphasis on hydrogen production technologies, carbon emissions reduction, and economic feasibility studies. His notable contributions include:

  • Hydrogen Energy Research: Development of LCA models to assess hydrogen production efficiency and carbon footprints.
  • Low-Carbon Transition Strategies: Medium and long-term scenario analysis for energy transformation in the Guangdong-Hong Kong-Macao Greater Bay Area.
  • Industrial Innovation: Evaluation of hydrogen metallurgy as an alternative for reducing emissions in the steel industry.
  • Waste Management and Renewable Energy: Modeling of wind power waste generation and end-of-life strategies in China.

His extensive work is reflected in multiple high-impact journal publications, including:

  • Journal of Engineering Thermophysics (Award-winning paper on hydrogen production routes)
  • International Journal of Hydrogen Energy
  • Progress in New Energy
  • Resources, Conservation and Recycling
  • Sustainability

Accolades and Recognition 🏆

Dr. Zheng’s contributions to hydrogen energy and sustainability research have earned him prestigious accolades:

  • 2024 Outstanding Paper Award from the Journal of Engineering Thermophysics.
  • 2024 Global Top Ten Award for the Commercialisation of Research Results by Engineers, highlighting his ability to bridge the gap between academic research and real-world applications.

Impact and Influence 🌍

Dr. Zheng’s work plays a crucial role in shaping China’s energy transition policies and advancing green technologies. His research on hydrogen energy supply scenarios and carbon neutrality goals has influenced decision-making in both government and industry sectors, paving the way for sustainable energy solutions.

Legacy and Future Contributions 🔮

With a growing portfolio of influential research and industry collaborations, Dr. Zheng is set to become a leading figure in hydrogen energy innovation. His future contributions will likely focus on enhancing hydrogen production efficiency and expanding its commercial applications, developing comprehensive LCA frameworks to support low-carbon policies, and strengthening partnerships with global energy stakeholders to accelerate clean energy adoption.

Publications


  • 📄 A Study of the Life Cycle Exergic Efficiency of Hydrogen Production Routes in China
    Authors: Lixing Zheng, Xian Jiang, Xue Zhang, Shuang Wang, Rui Wang, Lijun Hu, Kai Xie, Peng Wang
    Journal: Sustainability
    Year: 2025


  • 📄 Assessing Energy Consumption, Carbon Emissions, and Costs in Biomass-to-Gas Processes: A Life-Cycle Assessment Approach
    Authors: Ming Liu, Jian Zeng, Guohua Huang, Xiaohong Liu, Guoqiang He, Shun Yao, Ning Shang, Lixing Zheng, Peng Wang
    Journal: Sustainability
    Year: 2024


  • 📄 Medium and Long-Term Hydrogen Production Technology Routes and Hydrogen Energy Supply Scenarios in Guangdong Province
    Authors: Lixing Zheng, Daiqing Zhao, Wenjun Wang
    Journal: International Journal of Hydrogen Energy
    Year: 2023


  • 📄 Analysis of the Alternative Potential and Economic Benefits of Hydrogen Metallurgy Technology in the Iron and Steel Industry—A Case Study of Guangdong Province
    Authors: Lixing Zheng, Genglin Dong, Peng Wang, Daiqing Zhao
    Journal: Progress in New Energy
    Year: 2023


  • 📄 Research on Energy Efficiency, Carbon Emissions, and Economics of Hydrogen Production Routes in China Based on Life Cycle Assessment
    Authors: Lixing Zheng, Daiqing Zhao, Xiaoling Qi, et al.
    Journal: Journal of Engineering Thermophysics
    Year: 2022


 

Noorfidza Yub Harun | Chemical Engineering | Best Researcher Award

Dr. Noorfidza Yub Harun | Chemical Engineering | Best Researcher Award

Universiti Teknologi Petronas | Malaysia

Author Profile

Scopus

Google Scholar

Early Academic Pursuits 🎓

Dr. Noorfidza Yub Harun's academic journey is marked by a strong foundation in both chemical and mechanical engineering. She earned her PhD in Mechanical Engineering from the University of New Brunswick, where she also obtained a Diploma in University Teaching. Her earlier academic qualifications include an MSc in Forest Engineering, another MSc in Environmental Energy Engineering from the University of Sheffield, and a BEng in Chemical and Process Engineering from the National University of Malaysia. These diverse academic experiences have provided her with a broad and deep understanding of engineering principles, particularly in the fields of environmental and mechanical engineering.

Professional Endeavors 💼

As a Senior Lecturer at Universiti Teknologi PETRONAS, Dr. Noorfidza has made significant contributions to the field of chemical engineering through her teaching and research. Her professional endeavors include leading numerous research projects, such as the synthesis of mechanical characteristics and ash fusion temperature of krafts-based pellet fuel and the development of biochar-based adsorbents for heavy metals remediation. These projects not only highlight her expertise but also her commitment to advancing sustainable and environmentally friendly engineering solutions.

Contributions and Research Focus 🔬

Dr. Noorfidza's research primarily focuses on the intersection of environmental sustainability and engineering. Her work on ash fusion behavior, biochar development, and the incorporation of glycerol as a compatibilizer in biopolymer matrices are particularly noteworthy. These projects demonstrate her ability to address complex environmental challenges through innovative engineering solutions. Her research has significant implications for the fields of energy production, waste management, and environmental remediation, making her a key contributor to sustainable engineering practices.

Accolades and Recognition 🏅

Throughout her career, Dr. Noorfidza has been recognized for her contributions to academia and research. Her role as the principal investigator in several high-impact research projects is a testament to her leadership and expertise. Her work has garnered attention within the academic community, particularly for its focus on sustainable engineering solutions. While specific awards and accolades are not detailed here, her ongoing research projects and the respect she commands in her field suggest a scholar of high repute.

Impact and Influence 🌍

Dr. Noorfidza's impact extends beyond her immediate academic environment. Through her research, she has contributed to the development of sustainable engineering practices that have the potential to address global environmental challenges. Her work on biochar-based adsorbents and renewable energy sources like biomass and sludge-derived fuels has influenced both the academic community and industry practices. Additionally, her teaching has shaped the next generation of engineers, instilling in them the importance of environmental sustainability in engineering.

Legacy and Future Contributions 🌟

As Dr. Noorfidza continues her work at Universiti Teknologi PETRONAS, her legacy is likely to be one of innovation and dedication to sustainable engineering. Her ongoing research and teaching efforts ensure that she will continue to contribute significantly to the field. Her work not only addresses current environmental challenges but also lays the groundwork for future advancements in chemical and environmental engineering. Dr. Noorfidza's career thus far suggests that her future contributions will continue to impact the field positively, making her a worthy candidate for recognition as an outstanding scholar.

 

Publications  📚


📄 Title: Response Surface Methodology and Artificial Neural Network Modelling of Palm Oil Decanter Cake and Alum Sludge Co-Gasification for Syngas (CO+H2) Production
Authors: Kunmi Joshua Abioye, Noorfidza Yub Harun, Ushtar Arshad, Suriati Sufian, Mohammad Yusuf, Ahmad Hussaini Jagaba, Joshua O. Ighalo, Abdullah A. Al-Kahtani, Hesam Kamyab, Ashok Kumar, Chander Prakash, Jude A. Okolie, Hussameldin Ibrahim
Journal: International Journal of Hydrogen Energy
Year: 2024


📄 Title: Optimization of Operational Parameters Using Artificial Neural Network and Support Vector Machine for Bio-oil Extracted from Rice Husk
Authors: Ahmed, A., Yub Harun, N., Waqas, S., Arshad, U., Ghalib, S.A.
Journal: ACS Omega
Year: 2024


📄 Title: Optimization of Syngas Production from Co-Gasification of Palm Oil Decanter Cake and Alum Sludge: An RSM Approach with Char Characterization
Authors: Abioye, K.J., Harun, N.Y., Sufian, S., Chelliapan, S., Kang, K.
Journal: Environmental Research
Year: 2024


📄 Title: Energy-Efficient Single-Stage Membrane Rotating Biological Contactor for Wastewater Treatment
Authors: Waqas, S., Harun, N.Y., Lock, S.S.M., Alsaadi, A.S.
Journal: Bioresource Technology Reports
Year: 2024


📄 Title: Optimization of Operational Parameters Using RSM, ANN, and SVM in Membrane Integrated with Rotating Biological Contactor
Authors: Waqas, S., Harun, N.Y., Arshad, U., Nordin, N.A.H., Alsaadi, A.S.
Journal: Chemosphere
Year: 2024