Xuejiao Sun | Chemical Engineering | Best Researcher Award

Dr. Xuejiao Sun | Chemical Engineering | Best Researcher Award

Guangdong Industry Polytechnic | China

Author Profile

Scopus

📚 Early Academic Pursuits

Dr. Xuejiao Sun embarked on her academic journey with a deep passion for chemical engineering. She earned her Bachelor of Engineering degree from Wuhan Polytechnic University in 2010, specializing in chemical and environmental engineering. Her thirst for knowledge and scientific exploration led her to pursue a Ph.D. in Chemical Engineering at the South China University of Technology, where she honed her expertise from 2010 to 2015. Her doctoral research laid a strong foundation for her future contributions in materials science and adsorption technologies.

🏛️ Professional Endeavors

Dr. Sun's professional career reflects a steady and remarkable progression in academia. She began as a Lecturer at Quanzhou Normal University in 2015 and quickly rose to the position of Associate Professor in 2018. Her commitment to research and education then led her to Guangdong Industry Polytechnic in 2021, where she currently serves as an Associate Professor in the School of Chemical Engineering and Technology. Her teaching and mentorship have inspired a new generation of researchers in the field.

🔬 Contributions and Research Focus

Dr. Sun's research primarily revolves around advanced materials, with a focus on Metal-Organic Frameworks (MOFs), porous carbon materials, and adsorption technologies. Her studies have significantly contributed to:

  • Developing novel MOF-based materials for gas adsorption, separation, and environmental applications.
  • Advancing lithium-sulfur battery technology by enhancing key material properties for improved energy storage.
  • Designing porous carbon materials with high surface areas for efficient purification of volatile organic compounds (VOCs) and indoor air pollutants.
  • Innovating superhydrophobic materials for industrial and environmental applications.

Her work has not only led to scientific advancements but also holds potential for real-world applications in energy storage, environmental protection, and chemical engineering.

🏆 Accolades and Recognition

Dr. Sun's contributions have been recognized through multiple research grants, including prestigious funding from the National Natural Science Foundation of China. She has served as a Principal Investigator (PI) and Co-Principal Investigator (Co-PI) on numerous projects, securing millions in research funding. Her work has been published in high-impact journals such as Environmental Research, Chemical Engineering Journal, and Energy & Fuels. Additionally, she holds several Chinese patents, reflecting her commitment to translating research into practical innovations.

🌍 Impact and Influence

As a leading researcher in chemical engineering, Dr. Sun has significantly influenced the field of adsorption materials and energy storage. Her studies on MOFs and porous carbon materials have opened new avenues for sustainable environmental solutions. Her mentorship has also shaped many aspiring scientists, fostering a culture of excellence and innovation in academia.

🔮 Legacy and Future Contributions

Dr. Sun's legacy is defined by her relentless pursuit of scientific excellence and innovation. Looking ahead, she aims to further explore advanced nanomaterials, expand her research on adsorption mechanisms, and contribute to green technologies for a sustainable future. Through her pioneering work, she continues to bridge the gap between fundamental research and practical applications, leaving a lasting impact on chemical engineering and materials science.

Publications


  • 📄 Water phase synthesis of nano-hierarchical porous metal–organic frameworks for removal of uranium (VI) from aqueous solution
    Author(s): Kai Zheng, Kaikai Zhao, Weibiao Guo, Xuquan Liu, Yu Liang, Kuan Liang, Qianjun Deng, Hongxia Xi, Pengfei Yang, Xuejiao Sun, Chongxiong Duan
    Journal: Inorganica Chimica Acta
    Year: 2025


  • 📄 MOFs-derived porous carbon materials for gas adsorption and separation
    Author(s): Xuejiao Sun, Chenpeng Wang, Pan Xiaoyang, Liu Yubin, Chen Kongfa, Shuiyuan Luo
    Journal: Chinese Science Bulletin (Chin Sci Bull)
    Year: 2021


  • 📄 Novel hierarchical Fe(Ⅲ)-doped Cu-MOFs with enhanced adsorption of benzene vapor
    Author(s): Xuejiao Sun, Xiulian Gu, Wentao Xu, Wen-Jie Chen, Qibin Xia*, Xiaoyang Pan, Xiaojing Zhao, Yi Li, Qi-Hui Wu*
    Journal: Frontiers in Chemistry
    Year: 2019


  • 📄 Novel MOF-5 derived porous carbons as excellent adsorption materials for n-hexane
    Author(s): Xuejiao Sun, Tingting Wu, Zhimin Yan, Wen-Jie Chen, Xiao-Bing Lian, Qibin Xia*, Shaoyun Chen, Qi-Hui Wu*
    Journal: Journal of Solid State Chemistry
    Year: 2019


  • 📄 SiC Nanofibers as Long-Life Lithium-Ion Battery Anode Materials
    Author(s): Xuejiao Sun, Changzhen Shao, Feng Zhang, Yi Li, Qi-Hui Wu*, Yonggang Yang
    Journal: Frontiers in Chemistry
    Year: 2018


 

Minseong Ko | Energy | Best Researcher Award

Prof. Minseong Ko | Energy | Best Researcher Award

Pukyong National University | South Korea

Author Profile

Scopus

Orcid

🌟 Early Academic Pursuits

Prof. Minseong Ko's journey into the world of materials science and battery technology began with a strong academic foundation. He obtained his Bachelor of Science degree from Pukyong National University in the Department of Materials Science and Engineering. His passion for advanced materials led him to pursue a Master’s degree at Gwangju Institute of Science & Technology (GIST), where he focused on enhancing the sensitivity of GMR Spin Valve Sensors. He continued his academic excellence by earning a Ph.D. in Battery Science & Technology from the Ulsan National Institute of Science & Technology (UNIST). Under the guidance of esteemed mentors, including Prof. Jaephil Cho, he gained deep insights into lithium-ion batteries (LIBs) and energy storage technologies. His academic journey culminated in postdoctoral research at the Massachusetts Institute of Technology (MIT), where he worked under the mentorship of Prof. Ju Li, further strengthening his expertise in nuclear science and engineering.

💼 Professional Endeavors

Currently, Prof. Minseong Ko serves as an Associate Professor in the Department of Metallurgical Engineering at Pukyong National University, Busan, Republic of Korea. His professional trajectory has been marked by his contributions to battery technology and materials science. Throughout his career, he has engaged in cutting-edge research, focusing on the synthesis and functionalization of carbon materials, modification of nanomaterials, and the development of coating equipment for mass production. His role as an educator is equally significant, having taught and mentored students in advanced energy storage materials at prestigious institutions such as UNIST and Pukyong National University.

📈 Contributions and Research Focus

Prof. Ko’s research primarily revolves around all-solid-state batteries and lithium-ion battery (LIB) materials. His pioneering work in synthesizing cathode and anode materials aims to enhance energy storage efficiency, improve fast-charging capabilities, and ensure the non-flammability of LIBs. His expertise extends to in-situ analysis of electrode materials and HPPC (Hybrid Pulse Power Characterization) testing for electric vehicles. Additionally, he has been instrumental in the development of large-scale synthesizing equipment for commercialization, bridging the gap between academic research and industrial application.

His research interests include:

  • Development of high-energy and fast-charging lithium-ion batteries
  • Synthesis and surface modification of electrode materials
  • Fabrication of electrochemical full-cells (pouch and coin-type)
  • Commercialization and mass production of battery materials

🏆 Accolades and Recognition

Prof. Ko’s contributions to battery science have been widely recognized in the academic and industrial sectors. His groundbreaking research has been published in top-tier journals, including Nature Communications, Advanced Energy Materials, ACS Nano, and Nano Letters. These publications highlight his significant contributions to the advancement of high-performance lithium-ion batteries and nanomaterial applications. His work has not only earned him academic accolades but has also positioned him as a leader in the field of energy storage technology.

🔋 Impact and Influence

Through his extensive research and publications, Prof. Ko has made a lasting impact on the field of energy storage. His studies on silicon-based anodes and high-capacity cathode materials have paved the way for more efficient and durable lithium-ion batteries, crucial for applications in electric vehicles and renewable energy systems. His collaborative approach has also contributed to global advancements in materials engineering, fostering partnerships between academia and industry to drive innovation. Beyond research, Prof. Ko is deeply committed to mentoring the next generation of scientists and engineers. His teaching philosophy emphasizes hands-on experimentation and industry collaboration, equipping students with the skills needed to tackle real-world challenges in battery technology.

🌍 Legacy and Future Contributions

Looking ahead, Prof. Minseong Ko aims to further revolutionize battery technology by developing next-generation solid-state batteries with enhanced safety and performance. His research endeavors continue to focus on improving the longevity, efficiency, and sustainability of energy storage systems. As a respected scientist and mentor, he is set to leave a lasting legacy in the fields of materials science and electrochemical energy storage. With his unwavering dedication to innovation and excellence, Prof. Ko’s contributions will undoubtedly shape the future of sustainable energy solutions, benefiting industries and societies worldwide.

 

Publications


📄 "Morphology Control of Al Oxide Coating to Suppress Interfacial Degradation in Ultra-high Nickel Cathode Materials"

  • Authors: Minseong Kim, Jiyun Park, Taewan Kim, Byeonggu Kang, Jaegeon Im, Minseong Ko, Sujong Chae

  • Journal: Electrochimica Acta

  • Year: 2025


📄 "Binder-free CNT-implanted Carbon Cloth and Carbon Felt as Cathode Modifier for Bioelectricity Generation in Sediment Microbial Fuel Cells"

  • Authors: Nurfarhana Nabila Mohd Noor, Rashida Misali, Minseong Kim, Jeongmok Park, Minseong Ko, In-Cheol Lee, Tadashi Hibino, Kyunghoi Kim

  • Journal: Journal of the Taiwan Institute of Chemical Engineers

  • Year: 2025


 

Devki Talwar | Materials Science | Best Researcher Award

Prof. Dr. Devki Talwar | Materials Science | Best Researcher Award

University of North Florida | United States

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 🎓

Prof. Dr. Devki Talwar’s academic journey began in India, where he completed his B.Sc. in Physics, Chemistry, and Mathematics at Agra University in 1968. His academic path continued at Agra University, where he earned his M.Sc. in Physics (Electronics) in 1970. He then pursued a Ph.D. at Allahabad University, where his dissertation focused on the lattice dynamics of perfect and imperfect zinc-blende type crystals. His PhD work was guided by distinguished professors, including Prof. A.A. Maradudin, Prof. L.S. Kothari, and Prof. Bal K. Agrawal.

Professional Endeavors 🌍

Prof. Talwar’s professional career spans decades of teaching, research, and leadership. Starting as an Assistant Professor at Texas A&M University in 1982, he later moved to the University of Houston and then to Indiana University of Pennsylvania (IUP), where he made significant strides as a faculty member. He served as Chairman of the Department of Physics at IUP from 2007 to 2014 and continued as a Professor there until his retirement in 2018. In August 2018, Prof. Talwar joined the University of North Florida (UNF) in Jacksonville, where he continues to contribute to the field of physics.

Contributions and Research Focus 🔬

Prof. Talwar’s research centers on the experimental identification and characterization of impurities in nanostructured and photonic materials. His expertise spans infrared, photoluminescence, and Raman spectroscopy to study the electronic and optoelectronic properties of Group III-nitride and IV-IV materials, with a focus on their potential for device applications. His theoretical work includes lattice dynamics, thermodynamic properties, and the band structure of semiconductors, quantum wells, and superlattices. His innovative work in semiconductor materials and their applications has positioned him as a leading figure in his field.

Accolades and Recognition 🏅

Throughout his career, Prof. Talwar has garnered numerous accolades for his outstanding contributions to science. He was honored with the IUP Distinguished Faculty Award for Research and the prestigious title of University Professor, the highest honor at IUP. Additionally, he was recognized as an NRC Senior Research Fellow and invited to distinguished events such as the Science Conclave with Nobel Laureates at IIIT, Allahabad. His career achievements are also marked by his recognition as an Outstanding Researcher by IUP's College of Natural Sciences and Mathematics in 2012.

Impact and Influence 🌟

Prof. Talwar’s impact is evident not only through his groundbreaking research but also in his mentorship of students. His leadership in the NSF-supported Research at Undergraduate Institutions (RUI) program at IUP led to the success of numerous students, many of whom went on to complete their PhDs at top institutions. Prof. Talwar’s work has also made a significant contribution to the understanding of semiconductor materials, influencing both academic research and practical applications in the field of optoelectronics.

Legacy and Future Contributions 🌱

As Prof. Talwar continues his academic endeavors at UNF, his legacy is solidified through his extensive body of work, including numerous book chapters and research grants. His ongoing contributions to the development of novel materials and his involvement in key editorial boards further ensure that his influence will continue to shape the future of semiconductor physics and materials science for years to come. Prof. Talwar’s dedication to both research and education has left a lasting imprint on the scientific community.

Publications


  • 📄Analyzing Structural Optical and Phonon Characteristics of Plasma-Assisted Molecular-Beam Epitaxy-Grown InN/Al₂O₃ Epifilms
    Authors: Devki N. Talwar, Li Chyong Chen, Kuei Hsien Chen, Zhe Chuan Feng
    Journal: Nanomaterials
    Year: 2025


  • 📄Impact of Acoustic and Optical Phonons on the Anisotropic Heat Conduction in Novel C-Based Superlattices
    Authors: Devki N. Talwar, Piotr Becla
    Journal: Materials
    Year: 2024


  • 📄Simulations of Infrared Reflectivity and Transmission Phonon Spectra for Undoped and Doped GeC/Si (001)
    Authors: Devki N. Talwar, Jason T. Haraldsen
    Journal: Nanomaterials
    Year: 2024


  • 📄Assessment of Optical and Phonon Characteristics in MOCVD-Grown (AlₓGa₁₋ₓ)₀.₅In₀.₅P/n⁺-GaAs Epifilms
    Authors: Devki N. Talwar, Zhechuan Feng
    Journal: Molecules
    Year: 2024


  • 📄Computational Phonon Dispersions, Structural, and Thermodynamical Characteristics of Novel C-Based XC (X = Si, Ge, and Sn) Materials
    Authors: Devki N. Talwar
    Journal: Next Materials
    Year: 2024


 

Sanboh Lee | Materials Science | Best Researcher Award

Prof. Sanboh Lee | Materials Science | Best Researcher Award

National Tsing Hua University | Taiwan

Author Profile

Scopus

Orcid

🌱 Early Academic Pursuits

Prof. Sanboh Lee's journey into materials science began with a BS in Physics from Fu Jen Catholic University (1970), followed by an MS in Physics from National Tsing Hua University (1972). His academic curiosity led him to pursue a PhD in Materials Science at the University of Rochester (1980), where he built a strong foundation in material properties and mechanics.

💼 Professional Endeavors

With a career spanning decades, Prof. Lee has been a Professor at National Tsing Hua University (1985-2018) and served as an Adjunct Professor at the University of Science and Technology Beijing since 2005. His global research contributions include visiting scholar roles at Lehigh University and guest scientist positions at the National Institute of Standards and Technology (NIST). His consultancy work with institutions like the University of Rochester, Oak Ridge National Laboratory, and the University of Tennessee reflects his expertise in materials engineering.

🔬 Contributions and Research Focus

Prof. Lee’s research spans dislocation mechanics, optical and mechanical properties of polymers, hydrogen transport in low-carbon steels, and semiconductor devices. His groundbreaking studies include:

  • Dislocation and crack interactions in materials.
  • Gamma-ray effects on optical and mechanical properties.
  • Nano-imprint technology and micro-machining innovations.
  • Diffusion-induced and thermal stresses in materials.
  • Polymers and composite materials with enhanced mechanical and optical properties.
    With over 280 journal publications and 150 conference presentations, Prof. Lee has significantly shaped modern material science.

🏆 Accolades and Recognition

Prof. Lee has received numerous international awards, including:

  • Lifetime Achievement Award (2022) by VDGOOD® Professional Association.
  • SAS Eminent Fellow Membership (2021).
  • Fellow, Materials Research Society-Taiwan (2009).
  • Tsing Hua Chair Professor (2006-).
  • Fellow, ASM International, USA (2004) for contributions to fracture mechanics and transport processes in metals and polymers.
  • Outstanding Special Research Fellow (2002) by the National Science Council of Taiwan.
  • Who’s Who in Science and Engineering and other global recognitions in research excellence.

🌍 Impact and Influence

As an influential figure in materials science, Prof. Lee has contributed to academic committees, international symposia, and editorial boards. He has been an advisor, editor, and organizer for numerous scientific events and research journals. His leadership roles in organizations such as TMS, Materials Chemistry and Physics, and the Asia Pacific Academy of Materials underscore his global impact in material research and engineering.

🔮 Legacy and Future Contributions

Prof. Lee’s pioneering work in materials science, fracture mechanics, and nanotechnology continues to inspire new generations of researchers. His advancements in nano-imprint technology, hydrogen transport, and semiconductor materials are paving the way for next-generation engineering applications. As a Professor Emeritus, his legacy endures through ongoing collaborations, mentorship, and research innovations that will influence future breakthroughs in materials engineering and nanotechnology.

Publicaations


📄 Kinetic Analysis of the Cracking Behavior in Methanol-Treated Poly(methyl methacrylate)/Functionalized Graphene Composites

  • Journal: Journal of Composites Science
  • Year: 2025
  • Authors: Bing-Hong Yang, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee

📄 Cracking in UV-Irradiated Poly(methyl methacrylate)/Functionalized Graphene Composites: Solvent Effect

  • Journal: Journal of Polymer Research
  • Year: 2024
  • Authors: Bing-Hong Yang, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee

📄 Analysis of the Thermal Aging Kinetics of Tallow, Chicken Oil, Lard, and Sheep Oil

  • Journal: Molecules
  • Year: 2024
  • Authors: Yun-Chuan Hsieh, Hao Ouyang, Yulin Zhang, Donyau Chiang, Fuqian Yang, Hsin-Lung Chen, Sanboh Lee

📄 Creep-Recovery Deformation of 304 Stainless-Steel Springs Under Low Forces

  • Journal: Mechanics of Materials
  • Year: 2024
  • Authors: Ming-Yen Tsai, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee

📄 A Mechanical Model for Stress Relaxation of Polylactic Acid/Thermoplastic Polyurethane Blends

  • Journal: Journal of Composites Science
  • Year: 2024
  • Authors: Yi-Sheng Jhao, Hao Ouyang, Chien-Chao Huang, Fuqian Yang, Sanboh Lee

 

Shehzad Ahmed | Materials Science | Best Researcher Award

Dr. Shehzad Ahmed | Materials Science | Best Researcher Award

Shenzhen University | China

Author Profile

Scopus

Google Scholar

Early Academic Pursuits 🎓

Dr. Shehzad Ahmed's academic journey began with a Bachelor’s degree in Applied Physics from Kohat University of Science and Technology in Pakistan, where he researched thin film deposition techniques. This foundational interest propelled him toward a Master’s in Applied Physics at the International Islamic University in Islamabad, where he delved into the fascinating dynamics of magnetic nanoparticles. His early work here ignited his passion for materials science, especially in understanding complex material behaviors at the atomic level.

Professional Endeavors 🌍

Dr. Ahmed has held diverse roles, including Lecturer and Research Assistant at the International Islamic University, where he taught physics and developed expertise in nanotechnology research. He later served as an Assistant Professor at Sarhad University in Pakistan, delivering advanced courses in chemistry and supervising student research. His international experience includes a Visiting Fellowship at the Southern University of Science and Technology, Shenzhen, where he currently explores innovative materials for energy applications.

Contributions and Research Focus 🔬

Dr. Ahmed's primary research centers on the atomic structure and behavior of amorphous phase-change memory materials. He explores how structural disorder impacts the electrical, optical, and bonding properties of materials. His extensive work on Sb-Te phase-change memory materials aims to advance next-generation memory devices. Dr. Ahmed also investigates energy materials, batteries, catalysis, and nanotechnology, publishing numerous papers in top-tier scientific journals.

Accolades and Recognition 🏆

Dr. Ahmed's research achievements have been recognized through invitations to prestigious conferences, including the World Young Scientist Summit in Wenzhou and multiple Sino-German Bilateral Symposia on electronic and memory materials. His work has also earned him positions on international research collaborations, highlighting his impact within the global scientific community.

Impact and Influence 🌐

Dr. Ahmed's contributions to phase-change memory and amorphous materials science have paved the way for advancements in memory technology and sustainable energy solutions. His research is influential in guiding the design of high-performance materials, inspiring young scientists and students who look to his work as a foundation in materials science.

Legacy and Future Contributions 🌱

Dr. Ahmed envisions a career focused on pioneering discoveries in condensed matter physics and materials science, aiming to bridge academic research with industrial applications. His commitment to understanding and innovating materials for energy storage and catalysis positions him as a driving force for future advancements, ensuring a lasting legacy in the field of materials science.

 

Publications


  • 📄 "Polarization insensitive non-interleaved frequency multiplexed dual-band Terahertz coding metasurface for independent control of reflected waves"
    Authors: Iqbal, S., Noor, A., Ullah, N., Nisar, M.S., Wong, S.-W.
    Journal: Scientific Reports
    Year: 2024

  • 📄 "Enhanced As-COF nanochannels as a high-capacity anode for K and Ca-ion batteries"
    Authors: Ahmed, S., Ghani, A., Muhammad, I., Tian, X., Yakobson, B.
    Journal: Physical Chemistry Chemical Physics
    Year: 2024

  • 📄 "Revealing half-metallicity: Predicting large bandgaps in halogen-based full-Heusler alloys"
    Authors: Muhammad, I., Ahmed, S., Ullah, N., Tian, X., Zhang, J.-M.
    Journal: Results in Physics
    Year: 2024

  • 📄 "Unveiling the potential of aluminum-decorated 3D phosphorus graphdiyne as a catalyst for N₂O reduction"
    Authors: Ahmed, S., Khan, A.A., Khan, D., Xiaoqing, T., Muhammad, I.
    Journal: Physical Chemistry Chemical Physics
    Year: 2024

  • 📄"Giant Thermomechanical Bandgap Modulation in Quasi-2D Tellurium"
    Authors: Hussain, N., Ahmed, S., Tepe, H.U., Wu, H., Shcherbakov, M.R.
    Journal: Advanced Functional Materials
    Year: 2024

 

Reji Kumar Rajamony | Energy | Best Researcher Award

Dr. Reji Kumar Rajamony | Energy | Best Researcher Award

Universiti Tenaga Nasional | Malaysia

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 🎓

Dr. Reji Kumar Rajamony's academic journey began with a Diploma in Mechanical Engineering from DOTE, Tamil Nadu, India (June 1995 - May 1998). He then pursued a Bachelor's in Mechanical Engineering from Anna University, India (Sep 2005 - May 2009), followed by a Master's in Thermal Engineering from the same institution (June 2009 - May 2011). His academic path culminated with a Ph.D. in Advanced Materials from Universiti Malaysia Pahang, Malaysia (September 2019 - January 2023).

Professional Endeavors 💼

Dr. Rajamony has amassed significant experience across various roles, including Post-Doctoral Researcher at the Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Malaysia (May 2023 - Present); Adjunct Professor at Parul University, Gujarat, India (May 2024 - Present); Research Assistant at the Research Centre for Nano-Materials and Energy Technology (RCNMET), Sunway University, Malaysia (May 2022 - April 2023); Assistant Professor at Rajas Engineering College, India (September 2018 - August 2019); Lecturer at Bahir Dar University, Ethiopia (October 2012 - August 2018); Assistant Professor at CAPE Institute of Technology, India (June 2011 - September 2012); Lecturer at Surya Polytechnic College, India (September 2007 - August 2009); Instructor at Udaya Polytechnic College, India (July 2005 - August 2007); and Mechanical Supervisor at Ganesh Motor Works, India (March 2000 - February 2003) and Tamilnadu State Transport Corporation, India (March 1999 - February 2000)

Contributions and Research Focus 🔬

Dr. Rajamony's research spans advanced thermal energy storage materials, photovoltaic thermal systems, climate change, sustainability, and energy efficiency. His current projects include work on latent heat storage materials, nano-enhanced phase change materials, and PCM integrated PVT systems. His research aligns with the United Nations Sustainable Development Goals (SDGs) and involves sophisticated instrumentation like FESEM, FTIR, EDS, UV-Vis Spectrum, TGA, DSC, and thermal conductivity analyzers.

Accolades and Recognition 🏆

Dr. Rajamony has received multiple awards and recognitions, including the PhD-Best Thesis Award in the Engineering Category (2023) from Universiti Malaysia Pahang Al-Sultan Abdullah, Malaysia, and the Best Teacher Award from Bahir Dar Institute of Technology, Ethiopia (2013)

Impact and Influence 🌟 

With over 50 publications and a cumulative impact factor of 200+, Dr. Rajamony's work significantly contributes to the fields of energy storage and thermal systems. His research has garnered 1087 citations on Google Scholar, reflecting his influence in the scientific community. He also has extensive experience in teaching (12.6 years), research (5 years), and industry (4 years).

Legacy and Future Contributions Highlight 🌟

Dr. Rajamony's commitment to sustainable energy solutions and his expertise in advanced materials position him as a key contributor to achieving zero carbon footprints and greater energy efficiency. His ongoing research and professional endeavors continue to push the boundaries of energy technology, promising significant advancements toward a sustainable future.

 

Publications 📕

📝 Experimental investigation on the performance of binary carbon-based nano-enhanced inorganic phase change materials for thermal energy storage applications

    • Authors: Rajamony, R.K., Paw, J.K.S., Pasupuleti, J., Ahmed, O.A., Kadirgama, K.
    • Journal: Journal of Energy Storage
    • Year: 2024

📝 Enhancing Thermal Energy Storage: Investigating the Use of Graphene Nanoplatelets in Phase Change Materials for Sustainable Applications

    • Authors: Muppana, V.N., Fikri, M.A., Samykano, M., Wan Hamzah, W.A., Kadirgama, K.
    • Journal: Energy Technology
    • Year: 2024

📝 Progress in research and technological developments of phase change materials integrated photovoltaic thermal systems: The allied problems and their mitigation strategies

    • Authors: Rajamony, R.K., B., K., Lagari, I.A., Soudagar, M.E.M., Khan, T.M.Y.
    • Journal: Sustainable Materials and Technologies
    • Year: 2024

📝 Emerging technologies, opportunities and challenges for microgrid stability and control

    • Authors: Satapathy, A.S., Mohanty, S., Mohanty, A., Ali, M.M., Bashir, M.N.
    • Journal: Energy Reports
    • Year: 2024

📝 A class of promising fuel cell performance: International status on the application of nanofluids for thermal management systems

    • Authors: Sofiah, A.G.N., Pasupuleti, J., Samykano, M., Sulaiman, N.F., Che Ramli, Z.A.
    • Journal: Materials Today Sustainability
    • Year: 2024

Kamal Bhujel | Physics and Astronomy | Best Researcher Award

Dr. Kamal Bhujel | Physics and Astronomy | Best Researcher Award

Mizoram University | India

Author Profile

Scopus

Orcid

Early Academic Pursuits

Dr. Kamal Bhujel's academic journey began in Darjeeling, India. He demonstrated academic excellence from a young age, achieving the third rank in his district during his secondary education at St. Alphonsus School. He continued his higher education at Vidyasagar Metropolitan College, Calcutta, earning a Bachelor of Science in PCM. His academic pursuits culminated in a Master of Science in Physics from Sunrise University, Rajasthan, and a Bachelor of Education from WBUTTPEA. Dr. Bhujel's commitment to education and learning is further evidenced by his completion of a PhD in Physics from Mizoram University, under the supervision of Prof. R. Thangavel, focusing on the synthesis and characterization of lead-free perovskite films for photovoltaic applications.

Professional Endeavors

Dr. Bhujel's professional career spans several roles in education and research. He started as a part-time teacher at Ramakrishna Higher Secondary School in 2016 and later joined Don Bosco High School in Mirik. He has guided numerous M.Sc. and M.Tech/B.Tech students in their research projects and has been instrumental in preparing students for competitive examinations such as NEET and JEE. His expertise extends to Vedic mathematics and psychological counseling, addressing students' mental health. Dr. Bhujel is also active in promoting educational systems like the International Baccalaureate and Montessori education. He has organized numerous science outreach programs and educational workshops in Darjeeling and other parts of West Bengal.

Contributions and Research Focus

Dr. Bhujel's research is primarily focused on the synthesis and characterization of nanomaterials, including nanoparticles, nanorods, and quantum dots. His work on lead-free perovskite solar cells, both inorganic and organic, highlights his commitment to developing sustainable energy solutions. He has explored various materials for hole and electron transport, including NiO and TiO/ZnO with doping, and has been involved in fabricating thin-film solar cell devices. His research contributions are documented in several published papers, covering topics like the properties of spin-coated zinc oxide thin films and the role of NiO thin films in perovskite solar cells.

Accolades and Recognition

Dr. Bhujel has been recognized for his academic and research contributions throughout his career. He has presented papers at various national and international conferences, such as the Mizoram Science Congress and the International Conference on Material Science. His research has been published in reputable journals like Materials Today: Proceedings and Applied Physics A. Additionally, he has authored a book, "Prasfutit Aawazharu," a collection of contemporary Nepali poems.

Impact and Influence

Dr. Bhujel's influence extends beyond academia into community engagement and education. He has been a life member of the Indian Science Congress Association and actively participates in organizations such as the Gorkha Himalayan Science Society and the Breakthrough Science Society. His outreach efforts have included science programs in rural areas, enhancing scientific literacy and interest among young students.

Legacy and Future Contributions

Dr. Bhujel's legacy is marked by his dedication to advancing scientific knowledge and education. His future contributions are poised to impact the fields of nanomaterials and renewable energy significantly. As he continues to mentor students and engage in cutting-edge research, Dr. Bhujel's work will undoubtedly inspire future generations of scientists and educators. His ongoing projects and collaborations with institutions like IIT-Bombay and NEHU-Shillong promise to yield further advancements in material science and solar energy research.

 

Notable Publications

Cu-doped NiO thin film's structural, optical, and electrical properties and its negative absorption behaviour in the Infra-Red region. 2024

Effect of ZnO nanoparticles on the Judd–Ofelt and radiative parameters of Sm ions in sol–gel silica matrix 2024