Shuquan Huang | Chemical Engineering | Research Excellence Award

Assoc. Prof. Dr. Shuquan Huang | Chemical Engineering | Research Excellence Award

Kunming University of Science and Technology | China

Assoc. Prof. Dr. Shuquan Huang is an accomplished researcher in catalysis and sustainable chemical engineering, with a strong focus on electrocatalysis, photocatalysis, and energy‐related catalytic materials. His scholarly output comprises 55 research documents, which have received 3,235 citations across 2,883 citing publications, reflecting wide international recognition and impact, and he holds an h-index of 32. His research addresses the rational design of advanced catalytic systems, including MoS₂-based electrocatalysts, metal–oxide and zeolite‐supported catalysts, and engineered nanostructures for hydrogen production, biomass conversion, selective hydrogenation, and environmental remediation. His work is regularly published in high‐impact journals such as Chemical Engineering Journal, ACS Sustainable Chemistry & Engineering, ACS Catalysis, Green Chemistry, Applied Catalysis B, and Advanced Materials Interfaces. Collectively, his contributions advance efficient, selective, and sustainable catalytic processes for clean energy generation and green chemical transformations.

Research Metrics (Scopus)

3500
2800
2100
1400
0

Citations
3,235

Documents
55

h-index
32

Citations

Documents

h-index


View Scopus Profile

Featured Publications

Tigabu Bekele | Chemistry | Best Researcher Award

Mr. Tigabu Bekele | Chemistry | Best Researcher Award

Mekdela Amba University | Ethiopia

Mr. Tigabu Bekele is an emerging researcher whose work spans materials chemistry, nanotechnology, and photocatalysis, with a focus on environmental and biomedical applications. He has authored 11 scholarly documents, which collectively have garnered 130 citations, reflecting a growing impact in his field, supported by an h-index of 6. His notable publications include studies on the photocatalytic degradation of organic pollutants, the antibacterial properties of metallic nanoparticles, and nanocomposites for advanced sensing and catalytic applications. His recent works such as “The Photocatalytic Degradation of Organic Pollutants – A Comprehensive Overview” , “Electrochemical Sensor Based on Polyaniline Supported CdS/CeO₂/Ag₃PO₄ Nanocomposite for Malathion Detection” (2024), and “Antibacterial Capabilities of Metallic Nanoparticles and Influencing Factors”  exemplify his interdisciplinary approach combining nanomaterials synthesis with practical environmental and biomedical implications. Additionally, his book chapters in Nanotechnology in Diagnosis and Medical Therapies and Advances with Selected Nanostructured Materials in Industrial Manufacturing contribute to the advancement of nanostructured materials in industrial and therapeutic contexts. Through his expanding publication record and impactful research, Mr. Bekele is contributing significantly to the development of sustainable nanomaterials and innovative chemical technologies for global challenges.

Profiles : Scopus | Orcid

Featured Publications

Bekele, T., & Alamnie, G. (2025). The photocatalytic degradation of organic pollutants: A comprehensive overview. Results in Chemistry, Article 102758.

Mebratie, G., Bekele, T., Alamnie, G., Girma, A., & Mekuye, B. (2024). Advances with selected nanostructured materials in industrial manufacturing. In Advances with Selected Nanostructured Materials in Industrial Manufacturing (Book chapter). Elsevier.

Bekele, T. M. (2024). Electrochemical sensor based on polyaniline supported CdS/CeO₂/Ag₃PO₄ nanocomposite for Malathion detection. Sensors International, Article 100251.

Bekele, T., Mebratie, G., Alamnie, G., & Girma, A. (2024). Nanotechnology in diagnosis and medical therapies. In Reference Module in Materials Science and Materials Engineering (Book chapter). Elsevier.

Mebratie, G., Abera, B., Mekuye, B., & Bekele, T. (2024). The interplay of antiferromagnetism and superconductivity in Sr₁₋ₓNaₓFe₂As₂ superconductor: A theoretical study. Results in Physics, Article 107446.

Girma, A., Mebratie, G., Mekuye, B., Abera, B., Bekele, T., & Alamnie, G. (2024, December). Antibacterial capabilities of metallic nanoparticles and influencing factors. Nano Select.

Girma, A., Alamnie, G., Bekele, T., Mebratie, G., Mekuye, B., Abera, B., Workineh, D., Tabor, A., & Jufar, D. (2024, December 31). Green-synthesised silver nanoparticles: Antibacterial activity and alternative mechanisms of action to combat multidrug-resistant bacterial pathogens: A systematic literature review. Green Chemistry Letters and Reviews.

Tizazu, A., & Bekele, T. (2024, April). A review on the medicinal applications of flavonoids from Aloe species. European Journal of Medicinal Chemistry Reports, 100135.

Bekele, T., Mebratie, G., Girma, A., & Alamnie, G. (2024, March). Characterization and fabrication of p-Cu₂O/n-CeO₂ nanocomposite for the application of photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 133271.

 

Tianyuan Xiao | Chemistry | Best Researcher Award

Prof. Tianyuan Xiao | Chemistry | Best Researcher Award

Qiqihar University | China

Prof. Tianyuan Xiao is a distinguished researcher with a strong record of contributions to materials chemistry and sustainable energy research, having published 32 scientific documents that have garnered 247 citations , reflecting an h-index of 9. His research primarily explores deep eutectic solvents (DES), lignin nanoparticles, covalent adaptive networks, flame retardant materials, and lignin-based adhesive hydrogels, with an additional focus on density functional theory (DFT) for molecular modeling and analysis. Prof. Xiao’s studies are driven by the pursuit of sustainable and high-performance materials derived from lignocellulosic biomass. His recent influential works include “Recent Progress in Deep Eutectic Solvent (DES) Fractionation of Lignocellulosic Components: A Review” published in Renewable and Sustainable Energy Reviews and “Cracking Aryl Ether Bonds of Lignin by Gamma-Valerolactone (GVL) in Coordination with Acid Lithium Bromide Molten Salt System” in the International Journal of Biological Macromolecules. Through his research, Prof. Xiao has significantly advanced understanding of biomass valorization, solvent design, and green chemistry, offering novel insights into environmentally friendly processes for energy and materials innovation.

Profile : Scopus

Featured Publications

Xiao, T., Song, J., Jia, W., Sun, Y., Guo, Y., Fatehi, P., & Shi, H. (2025). Cracking aryl ether bonds of lignin by γ-valerolactone (GVL) in coordination with acid lithium bromide molten salt system. International Journal of Biological Macromolecules, 309(Part 1), 142643.

Xiao, T., Hou, M., Guo, X., Cao, X., Li, C., Zhang, Q., Jia, W., Sun, Y., Guo, Y., & Shi, H. (2024). Recent progress in deep eutectic solvent (DES) fractionation of lignocellulosic components: A review. Renewable and Sustainable Energy Reviews, 192, 114243.

Girma Sisay Wolde | Materials Science | Best Research Article Award

Dr. Girma Sisay Wolde | Materials Science | Best Research Article Award

National Chung Hsing University | Taiwan

Dr. Girma Sisay Wolde is a distinguished researcher in Materials Science and Engineering with a strong record of scientific contributions, evidenced by 156 citations across 145 documents, 9 key publications, and an h-index of 7. His academic journey includes a Ph.D. in Materials Science and Engineering from National Taiwan University of Science and Technology, an M.Sc. in Inorganic Chemistry from Addis Ababa University, and a B.Sc. in Applied Chemistry from Arba Minch University. Professionally, he has held roles as a postdoctoral researcher at National Chung Hsing University, assistant professor at Bule Hora University, and graduate research assistant at NTUST. His research focuses on photocatalysis, electrocatalysis, and the development of advanced materials for environmental and energy applications, including solar-light-driven ternary MgO/TiO₂/g-C₃N₄ heterojunctions, Zn-Ce-Ga trimetal oxysulfides, and defect-engineered Bi2Mn4O10/BiOI₁₋ₓBrₓ nanosheets. He has contributed to high-impact journals such as Chemosphere, Chemical Engineering Journal, Applied Surface Science, and ACS Applied Energy Materials, with work covering pollutant reduction, nitrogen fixation, and hydrogen evolution. In addition to his research, he has mentored M.Sc. students and guided experiments for high school students, fostering the next generation of scientists. Dr. Wolde’s innovative contributions to materials chemistry, coupled with his extensive publication and citation record, demonstrate both academic excellence and a strong potential for advancing sustainable materials and catalytic technologies.

Profiles : Scopus | Orcid

Featured Publications

Gemeda, T. N., Kuo, D.-H., Ha, Q. N., Gultom, N. S., & Wolde, G. S. (2024). 84.0% energy-efficient nitrate conversion by a defective (Fe, Cu, Ni)₂O₃ electrocatalyst. Journal of Materials Chemistry A.

Huang, T.-C., Chen, X., Wolde, G. S., & Kuo, D.-H. (2024). Photocatalytic hydrogen production over highly oxygen deficient Cu-doped TiO₂ and its composites: Insights of kinetic reaction micromechanisms. Separation and Purification Technology.

Gemeda, T. N., Kuo, D.-H., Wolde, G. S., & Gultom, N. S. (2023). In situ grown (Fe, Mn, Ga)₃O₄₋ₓ spinel/(Mn, Fe)₂O₃₋ᵧ bixbyite dual-phase electrocatalyst for preeminent nitrogen reduction to ammonia: A step toward the NH₃ economy. ACS Applied Energy Materials.

Urgesa, M. H., Wolde, G. S., & Kuo, D.-H. (2023). One-step hydrothermal synthesis of novel flower-like Bi₂Mn₄O₁₀ anchored on BiOI₁₋ₓBrₓ nanosheets for efficient photocatalytic nitrogen fixation. Journal of Alloys and Compounds.

Wolde, G. S., Kuo, D.-H., Urgesa, M. H., & Gemeda, T. N. (2023). Photocatalytic oxidation of benzyl alcohol coupled with p-dinitrobenzene reduction over poly(o-phenylenediamine) nanowires-decorated Gd-TiO₂ nanorods. Chemical Engineering Journal.

Urgesa, M. H., Wolde, G. S., & Kuo, D.-H. (2023). Plasmonic silver nanoparticle-deposited n-Bi₂S₃/p-MnOS diode-type catalyst for enhanced photocatalytic nitrogen fixation: Introducing the defective p-MnOS. Chemical Engineering Journal.

Wolde, G. S., Kuo, D.-H., & Abdullah, H. (2022). Solar-light-driven ternary MgO/TiO₂/g-C₃N₄ heterojunction photocatalyst with surface defects for dinitrobenzene pollutant reduction. Chemosphere.

Sisay, G., Abdullah, H., Kuo, D.-H., Lakew, W., Shuwanto, H., & Fentie, S. (2021). Zn-Ce-Ga trimetal oxysulfide as a dual-functional catalyst: Hydrogen evolution and hydrogenation reactions in a mild condition. Applied Surface Science.

Tadesse, S. F., Kuo, D.-H., Kebede, W. L., & Wolde, G. S. (2021). Visible light driven Nd₂O₃/Mo(S,O)₃₋ₓ·0.34H₂O heterojunction for enhanced photocatalytic degradation of organic pollutants. Applied Surface Science.

Xin Wang | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Xin Wang | Chemistry | Best Researcher Award

Zhengzhou University | China

Assoc. Prof. Dr. Xin Wang is an accomplished researcher in the field of chemistry and nanomaterials, with a strong focus on advanced energy storage and conversion systems. His research spans lithium-ion and lithium-sulfur batteries, metal-air batteries, supercapacitors, fuel cells, electrocatalysis, CO₂ reduction, and solar cells. Over the years, he has made significant contributions to the controllable synthesis of alloy-based nanomaterials, the development of high-entropy alloys, and the application of innovative catalysts for electrochemical CO₂ conversion and energy storage. His academic output is substantial, with 52 documents published, garnering 4,164 citations overall (3,400 since 2020), reflecting his consistent influence in the scientific community. He holds an h-index of 32 (30 since 2020) and an i10-index of 52, showcasing both the depth and breadth of his impactful work. His publications in high-impact journals, including Nature Communications, Journal of the American Chemical Society, Advanced Functional Materials, and Journal of Materials Chemistry A, underscore his role as a leading scientist in sustainable energy research. Recognized with multiple awards, fellowships, and competitive research grants, he continues to drive innovation in nanomaterials, electrocatalysis, and green energy technologies, shaping future directions in electrochemistry and materials science.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

Cai, M., Dong, Y., Xie, M., Dong, W., Dong, C., Dai, P., Zhang, H., Wang, X., Sun, X., Zhang, S., Yoon, M., Xu, H., Ge, Y., Li, J., & Huang, F. (2023). Stalling oxygen evolution in high-voltage cathodes by lanthurization. Nature Energy, 8(2), 159–168.

Fan, H., Si, Y., Zhang, Y., Zhu, F., Wang, X., & Fu, Y. (2024). Grapevine-like high entropy oxide composites boost high performance lithium sulfur batteries as bifunctional interlayers. Green Energy & Environment, 9(3), 565–572.

Wang, X., Miao, M., Tang, B., Duan, H., Zhu, F., Zhang, H., Zhang, X., Yin, W., & Fu, Y. (2023). Chlorine-induced mixed valence of CuOx/C to promote the electroreduction of carbon dioxide to ethylene. Nano Research, 16(20), 8827–8835.

Zhang, Y., Yu, Q., Wang, X., & Guo, W. (2023). Conversion of nitrogenous small molecules into value-added chemicals by building N–C bonds. Chemical Engineering Journal, 474, 145899.

Chai, D., Yan, H., Wang, X., Li, X., & Fu, Y. (2024). Retuning solvating ability of ether solvent by anion chemistry toward 4.5 V class Li metal battery. Advanced Functional Materials, 34(23), 2310516.

Yang, W., Xu, T., Fan, H., Yang, C., Sun, W., Ma, X., Wang, X., & Fu, Y. (2024). Selective and bifunctional catalytic electrochemical conversion of organosulfide molecule by high-entropy carbides. Advanced Functional Materials, 34(24), 2409450.

Wang, X., Li, W., Lv, X., & Broekmann, P. (2024). When chiral chemistry meets electrochemistry: A virgin land of an academic gold mine. Matter, 7(10), 2626–2788.

Cao, M., Li, W., Li, T., Zhu, F., & Wang, X. (2024). Polymetallic amorphous materials: Research progress in synthetic strategies and electrocatalytic applications. Journal of Materials Chemistry A, 12(30), 15541–15557.

Cui, T., Xu, J., Wang, X., Liu, L., Xiang, Y., Zhu, H., Li, X., & Fu, Y. (2024). Highly reversible transition metal migration in superstructure-free Li-rich oxide boosting voltage stability and redox symmetry. Nature Communications, 15, 4742.

Duan, H., Li, W., Ran, L., Zhu, F., Li, T., Miao, M., Yin, W., Wang, X., & Fu, Y. (2024). In-situ electrochemical interface of Cu@Ag/C towards the ethylene electrosynthesis with adequate *CO supply. Journal of Energy Chemistry, 99, 292–299.

Ma, X., Zhang, Y., Yang, W., Liu, C., Wang, X., & Fu, Y. (2025). Defect-engineered NbSx as an efficient cathode host for high-performance Li–organosulfur batteries. ChemSusChem. Advance online publication. e202500983.

Cao, M., Miao, H., Li, J., Liu, C., Wang, X., & Fu, Y. (2025). Tailoring the ionomer type to optimize catalyst microenvironment for enhanced CO2 reduction in membrane electrode assembly. Carbon Energy. Advance online publication.

Jie Wang | Materials Science | Best Researcher Award

Prof. Jie Wang | Materials Science | Best Researcher Award

Qingdao Agricultural University | China

Prof. Jie Wang is an accomplished scholar in materials science, specializing in the design and construction of functional materials with applications in renewable energy, electrocatalysis, and advanced energy storage systems. He has authored over 100 publications in leading international journals, which have collectively garnered more than 6,580 citations, reflecting his significant research impact with an impressive h-index of 47. His research contributions span electrocatalysis for zinc-air and lithium-ion batteries, oxygen evolution and reduction reactions, water splitting, and the rational design of nanostructured materials such as transition metal sulfides, perovskites, and metal-organic frameworks. Prof. Wang has undertaken collaborative research at globally recognized institutions and serves as a corresponding or first author on numerous high-impact studies published in journals such as Advanced Materials, Advanced Functional Materials, Journal of Materials Chemistry A, and Energy Storage Materials. His work has been recognized through prestigious awards including multiple provincial and national-level prizes in natural science and outstanding research achievements. Alongside his publications, he has successfully led several major national and regional research grants focused on energy storage, electrocatalysis, and sustainable materials development. Through his extensive scholarly output, mentorship, and innovative research directions, Prof. Jie Wang continues to make influential contributions to advancing materials science and energy technologies.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

Author, A. A., Author, B. B., & Author, C. C. (2025). Porous carbon with predominant graphitic nitrogen and abundant defects mediated by reductive molten salt enables boosted sulfur conversion for room-temperature sodium-sulfur batteries. Chemical Engineering Journal.

Author, A. A., Author, B. B., & Author, C. C. (2025). Enhancing oxygen evolution electrocatalysis in heazlewoodite: Unveiling the critical role of entropy levels and surface reconstruction. Advanced Materials.

Author, A. A., Author, B. B., & Author, C. C. (2025). Optimizing aqueous zinc-sulfur battery performance via regulating acetonitrile co-solvents and carbon nanotube carriers. ChemSusChem.

Author, A. A., Author, B. B., & Author, C. C. (2025). Homogeneous bismuth dopants regulate cerium oxide structure to boost hydrogen peroxide electrosynthesis via two-electron oxygen reduction. Inorganic Chemistry Frontiers.

Author, A. A., Author, B. B., & Author, C. C. (2025). Promoting effect of copper doping on LaMO₃ (M = Mn, Fe, Co, Ni) perovskite-supported gold catalysts for selective gas-phase ethanol oxidation. Catalysts.

Author, A. A., Author, B. B., & Author, C. C. (2025). Structural regulation of NiFe LDH under spontaneous corrosion to enhance the oxygen evolution properties. ChemSusChem.

Author, A. A., Author, B. B., & Author, C. C. (2025). Exploring the efficiency of N, N-dimethylformamide for aqueous zinc-sulfur batteries. Science China Chemistry.

Author, A. A., Author, B. B., & Author, C. C. (2024). Expediting corrosion engineering for sulfur-doped, self-supporting Ni-Fe layered dihydroxide in efficient aqueous oxygen evolution. Catalysts.

Author, A. A., Author, B. B., & Author, C. C. (2024). Rational design of electrolyte additives for improved solid electrolyte interphase formation on graphite anodes: A study of 1,3,6-hexanetrinitrile. Energies.

Author, A. A., Author, B. B., & Author, C. C. (2024). Phase modulation of nickel-tin alloys in regulating electrocatalytic nitrogen reduction properties. Rare Metals.

Hemantkumar Akolkar | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Hemantkumar Akolkar | Chemistry | Best Researcher Award

Rayat Shikshan Sanstha’s Abasaheb Marathe Arts and New Commerce, Science College | India

Assoc. Prof. Dr. Hemantkumar Akolkar is a distinguished academic and researcher in the field of chemistry with over 15 years of teaching and research experience. He earned his Ph.D. in Chemistry from Radhabai Kale Mahila Mahavidyalaya, affiliated with Savitribai Phule Pune University, and has since contributed significantly to the advancement of heterocyclic and green chemistry. His prolific research career includes 66 publications in reputed international journals, with an h-index of 7, i10-index of 4, and 284 citations, reflecting the growing impact of his work. Dr. Akolkar has successfully completed funded research projects from UGC and BCUD and holds six granted Indian patents on novel heterocyclic compounds with therapeutic and industrial potential. He has authored seven books and nine book chapters with leading publishers such as Springer, IGI Global, and the Royal Society of Chemistry, further highlighting his academic contributions. Additionally, he has presented 17 research papers at national and international conferences, organized academic events, and serves as a reviewer for renowned international journals including Scientific Reports and ChemistrySelect. Recognized as a Ph.D. guide and PG teacher by multiple universities, his work bridges innovation, pedagogy, and research leadership, making him a highly respected figure in chemical sciences.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

"Eco-Friendly Fabrication of Silver Nanoparticles Using Syzygium stocksii Leaf Extract: Physicochemical Characterization and Evaluation of Antioxidant and Anti-Inflammatory Activities"

"Synthesis, Antimicrobial Activity, and Molecular Docking Study of Novel (E)-1-(5-Chloro-2-hydroxyphenyl)-3-{5-fluoro-2-[(1-phenyl-1 H-1, 2, 3-triazol-4-yl) methoxy] phenyl}-prop-2-en-1-one Derivatives"

"Synthesis and Antimicrobial Evaluation of (E)-1-(2, 4-Dichlorophenyl)-4-{3-methoxy-4-[(1-phenyl-1 H-1, 2, 3-triazol-4-yl) methoxy] benzylidene}-3-methyl-1 H-pyrazol-5 (4 H)-one Derivatives"

"Optimizing Parthenium waste: biomass-derived carbon adsorbents for adsorbing Amido Black 10B dye analyzed through graph theory for stability and reactivity"

"Synthesis and Antimicrobial Evaluation of (E)-2-(4-((4-((1-(2, 4-Dichlorophenyl)-3-methyl-5-oxo-1, 5-dihydro-4 H-pyrazol-4-ylidene) methyl)-2-methoxyphenoxy) methyl)-1 H-1, 2, 3-triazol-1-yl)-N-phenylacetamide Derivatives"

"Eco-friendly development of Leucas aspera-derived MoO3 nanoparticles: corrosion studies and multifunctional applications in medicine, agriculture, and industry"

"Optimized green synthesis of biocompatible Ag nanostructures using Artemisia Indica leaf extract: a promising avenue for biomedical applications"

"Facile and Proficient Synthesis of Some New 1,2,4-Triazole-3-Thiones Derivatives Using [H2-TMDP][HPO4] Ionic Liquid"

"Synthesis, Antimicrobial Evaluation, and Computational Study of Novel Fluorinated Benzofuran Derivatives"

"New 1, 2, 3‐Triazole‐Tethered Chalcone Derivatives: Synthesis, Bioevaluation and Computational Study"

"Design, Synthesis, Molecular Docking, and Anti-inflammatory Activity of 2-[(E)-{1-[4-(4-Chlorophenyl)-1, 3-thiazol-2-yl]-1H-pyrazol-4-yl}(hydroxyimino) methyl] phenol and {1-[4-(4-Chlorophenyl)-1, 3-thiazol-2-yl]-1H-pyrazol-4-yl}(2-hydroxyphenyl) methanone Derivatives"

Visakh P M | Chemistry | Lifetime Achievement in Books Award

Dr. Visakh P M | Chemistry | Lifetime Achievement in Books Award

Mahatma Gandhi University | India

Author profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Visakh P. M began his academic journey in polymer chemistry at the School of Chemical Sciences, Mahatma Gandhi University in Kerala, India, where he completed his master’s, MPhil, and doctoral studies. His early training in chemistry laid the foundation for his specialization in polymer science and nanocomposites. His research during these years focused on bio-nanomaterials and advanced polymer systems, providing him with the skills and vision to expand into cutting-edge materials science.

Professional Endeavors

Following his doctoral studies, Dr. Visakh embarked on a global research career. He pursued postdoctoral research at Tomsk Polytechnic University in Russia, later serving as Associate Professor at TUSUR University, Tomsk. His career has since extended to his current role at the Natural Bioactive Materials Laboratory, Department of Bioengineering, Ege University, Turkey. Alongside these appointments, he has engaged in visiting research positions at institutions across Europe and South America, highlighting his international academic presence and collaborations.

Contributions and Research Focus

Dr. Visakh’s research contributions span polymer sciences, nanocomposites, material sciences, bio-nanocomposites, fire-retardant polymers, and liquid crystalline polymers. His work combines fundamental and applied research, advancing knowledge in sustainable materials, sensor development, and high-performance composites. His editorial leadership in producing dozens of books with leading international publishers further reflects his commitment to advancing global scientific discourse.

Accolades and Recognition

Dr. Visakh’s scientific impact has been recognized widely. He has been listed among the World’s Top 2% Scientists by Stanford University for consecutive years, a testament to his citation record, h-index, and influence in materials science. He has received numerous fellowships and research grants, including prestigious national and international awards supporting his advanced studies and collaborations across multiple countries.

Impact and Influence

Through his prolific output of over 50 edited volumes, numerous research articles, and book chapters, Dr. Visakh has shaped the global understanding of polymers and nanomaterials. His contributions extend beyond research to mentoring and academic leadership, as seen in his guest editorial roles for international journals. His ability to connect science with real-world applications has impacted fields ranging from sustainable material development to advanced industrial and biomedical uses.

Legacy and Future Contributions

Dr. Visakh’s legacy lies in his blend of scholarly productivity and global engagement. His editorial work has created lasting resources for researchers, while his scientific contributions continue to inspire advancements in polymer and nanoscience. Looking forward, his ongoing research in bio-nanocomposites and material applications in medicine, energy, and sustainability is set to expand both his personal impact and the reach of polymer science worldwide.

Publications


Article: Improvement of the Thermal Behaviour of Epoxy/Fe Nanoparticle Composites by the Addition of Flame Retardants
Authors: Nazarenko, O.B., Visakh, P.M., Amelkovich, Y.A. et al.
Journal: Journal of Inorganic and Organometallic Polymers and Materials
Year: 2025


Article: Thermal Stability and Flammability of Epoxy Composites Filled with Multi-Walled Carbon Nanotubes, Boric Acid, and Sodium Bicarbonate
Authors: Olga B. Nazarenko, Yulia A. Amelkovich, Alexander G. Bannov, Irina S. Berdyugina, Visakh P. Maniyan
Journal: Polymers
Year: 2021


Article: Mechanical and Thermal Properties of Moringa oleifera Cellulose-Based Epoxy Nanocomposites
Authors: Nadir Ayrilmis, Ferhat Ozdemir, Olga B. Nazarenko, P. M. Visakh
Journal: Journal of Composite Materials
Year: 2019


Article: Effect of Boric Acid on Thermal Behavior of Copper Nanopowder/Epoxy Composites
Authors: Olga B. Nazarenko, Alexander I. Sechin, Tatyana V. Melnikova, P. M. Visakh
Journal: Journal of Thermal Analysis and Calorimetry
Year: 2018


Article: Effect of Electron Beam Irradiation on Thermal and Mechanical Properties of Aluminum Based Epoxy Composites
Authors: Visakh P. M., O.B. Nazarenko, C. Sarath Chandran, T.V. Melnikova, S. Yu. Nazarenko, J.-C. Kim
Journal: Radiation Physics and Chemistry
Year: 2017


Conclusion

Dr. Visakh P. M is a globally recognized scholar whose career exemplifies dedication to research, teaching, and scientific dissemination. From his foundational work in polymer chemistry to his international collaborations and extensive editorial contributions, he has built a profile that reflects excellence, leadership, and innovation. His influence in polymer and nanomaterials research, combined with recognition as one of the world’s leading scientists, ensures that his legacy will continue to guide future discoveries and shape advancements across multiple domains of science.

Uzma Parveen Shaikh | Chemistry | Editorial Board Member

Dr. Uzma Parveen Shaikh | Chemistry | Editorial Board Member

Dr. Rafiq Zakaria College for Women | India

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Uzma Parveen Shaikh built her academic foundation in chemistry, earning both a master’s degree and a doctorate in the discipline. Her early education was marked by a strong inclination toward analytical and inorganic chemistry, with a particular focus on solvent extraction, spectrophotometric methods, and separation techniques for precious and transition metals. This academic grounding, coupled with a passion for research, positioned her to explore complex chemical phenomena and develop innovative solutions in analytical chemistry.

Professional Endeavors

Dr. Shaikh serves as an Assistant Professor of Chemistry at Dr. Rafiq Zakaria College for Women, Aurangabad, where she has been dedicated to teaching and guiding students for over a decade. Her teaching career is seamlessly integrated with her research pursuits, enabling her to create a dynamic learning environment that blends theoretical knowledge with experimental practice. She has also presented her research at several national and international conferences, contributing to scholarly discussions and scientific advancements in her field.

Contributions and Research Focus

Her research is centered on the synthesis of novel extractants and their application in the separation and determination of precious and rare metals such as palladium, rhodium, platinum, and gold. She has extensively studied Schiff base ligands, sulphur-containing extractants, and their spectrophotometric applications. Beyond metal extraction, her work extends to environmental chemistry, including physico-chemical studies of water quality and the isolation of catalytic materials from industrial waste. Her publications also cover bio-evaluation, thermodynamic studies, and the role of information technology in education, reflecting a multi-disciplinary approach.

Accolades and Recognition

Dr. Shaikh has earned recognition through numerous publications in reputed national and international journals. Her research has been presented at prestigious conferences, often earning appreciation for its originality and applicability. She has been invited to share her expertise on various academic platforms, reinforcing her status as a respected figure in the chemistry research community.

Impact and Influence

Her scientific contributions have significantly advanced methods of metal extraction, offering more efficient and selective processes for industrial and analytical applications. Her studies on environmental monitoring have also influenced best practices in water quality analysis and sustainable chemical usage. In academia, she has inspired students to pursue research-oriented careers, thus extending her impact beyond her direct scholarly work.

Legacy and Future Contributions

Dr. Shaikh’s legacy lies in her meticulous research methodology, her ability to bridge theoretical chemistry with practical applications, and her dedication to mentoring the next generation of chemists. Moving forward, she aims to expand her research in green chemistry, develop more sustainable extraction processes, and contribute to the broader field of material science, catalysis, and environmental protection.

Publications


Article: Solvent extraction of Nickel (II) from hydrochloric acid media using DMABIMTT
Authors: Uzma P. Shaikh, Vinod Shelke, Sarika Jadhav
Journal: Journal of Engineering and Technology Management
Year: 2024


Conference Paper: Solvent extraction of Zn(II) from hydrochloric acid media using DMABIMTT
Authors: Uzma P. Shaikh (presenter)
Conference: National Conference on IISTCS 23, Department of Chemistry, Deogiri College, Aurangabad, MS, India
Year: 2023


Article: Complexation, Bio-evaluation, Magnetic Susceptibility and Thermodynamic study of Newly Synthesized Pharmacologically active Schiff base with La(III), Ce(III) and Sm(III)
Authors: Zamzam Taher Omar, Shivaji Jadhav, Rashmi Pathrikar, Shaikh Uzma, Megha Rai
Journal: Asian Journal of Research in Chemistry
Year: 2022


Article: Ternary complex formation equilibria of tetradentate Schiff base ligand with Zn(II) and dipeptides
Authors: Sarika M. Jadhav, Vinod A. Shelke, Uzma P. Shaikh
Journal: International Journal of All Research Education and Scientific Methods
Year: 2021


Conference Paper: Determination of tannins in tea and coffee samples
Authors: Uzma P. Shaikh (presenter)
Conference: National Convention of Chemistry Teachers (NCCT 2020)
Year: 2020


Conclusion

Through her dedication to research, teaching, and knowledge dissemination, Dr. Shaikh has strengthened the link between advanced chemical research and its practical applications. Her focus on precious metal extraction, environmental chemistry, and novel analytical techniques ensures her continued relevance in addressing both industrial and environmental challenges. She stands as a role model for aspiring researchers and remains committed to advancing the frontiers of chemistry.

 

Shadi Hassanajili | Chemical Engineering | Best Researcher Award

Prof. Dr. Shadi Hassanajili | Chemical Engineering | Best Researcher Award

Shiraz University | Iran

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Prof. Dr. Shadi Hassanajili laid a strong foundation in the field of chemical and polymer engineering through her studies at leading Iranian universities. Her academic journey began with a bachelor’s degree in chemical engineering, where she investigated the use of PVC plastisol as a synthetic leather material. She advanced her specialization with a master’s degree in polymer engineering, focusing on polyurethane and polypropylene blends for blood bag materials. Her doctoral research in polymer engineering at Tarbiat Modares University centered on polyurethane and polycaprolactone blends as cardiovascular implants, marking the beginning of her lifelong engagement with biomedical materials and polymeric innovations.

Professional Endeavors

Over the years, Prof. Hassanajili has held several significant academic and administrative positions at Shiraz University. Her career began as an assistant professor and evolved into leadership roles such as Head of the Department of Chemical Engineering and Vice Chancellor for Education and Graduate Studies. Rising to the rank of professor, she has made lasting contributions to teaching and institutional development. Her long-standing commitment to higher education reflects her ability to balance research, leadership, and mentoring with excellence.

Contributions and Research Focus

Prof. Hassanajili’s research spans a wide range of areas including biomedical materials, rheology of polymers, nanocomposites, polymeric membranes for gas separation, and ferrofluids for oil spill remediation. She has pioneered work in developing smart polymeric stents with anticoagulation properties, self-healing coatings for anti-corrosion, and nanocomposite gels for water management in hydrocarbon reservoirs. Her patents in polymer-coated nanoparticles, gas separation membranes, and oil pollution devices highlight her innovative approach to solving industrial and environmental challenges. Her research reflects a deep integration of polymer science with healthcare, energy, and environmental applications.

Accolades and Recognition

Throughout her career, Prof. Hassanajili has been recognized for academic excellence and innovation. She graduated with distinction at both the bachelor’s and master’s levels, earning top ranks in her field, and received the prestigious Excellent PhD Thesis Award. Her recognition extends to her patents and funded projects, which showcase her ability to translate research into impactful technological solutions. These honors underscore her standing as a leading figure in polymer and chemical engineering.

Impact and Influence

Prof. Hassanajili has had a profound influence on both academic and industrial spheres. Her work in polymer-based biomedical applications has advanced knowledge in cardiovascular implants, scaffolds, and wound-healing technologies. In the energy sector, her contributions to enhanced oil recovery, polymer-enriched water systems, and nanocomposites have improved efficiency and sustainability. Her teaching of core courses in thermodynamics, rheology, polymer engineering, and fluid mechanics has shaped generations of chemical engineers, while her leadership roles have strengthened Shiraz University’s position in scientific research and education.

Legacy and Future Contributions

The legacy of Prof. Hassanajili lies in her ability to bridge fundamental polymer science with applied engineering for human health, industry, and the environment. Her patents, publications, and collaborative projects with national industries demonstrate her forward-looking vision. With continued engagement in nanomedicine, self-healing materials, and environmentally responsive polymers, her future contributions are poised to further impact healthcare innovations and sustainable engineering practices.

Publications


  • Thermal and mechanical enhancement of poly (methyl methacrylate) microcapsules using multi-walled carbon nanotubes and hydrophobic silica nanoparticles
    Authors: Abed Khavand, Fereshteh Ayazi, Shadi Hassanajili
    Journal: Journal of Molecular Liquids
    Year: 2025


  • Fabrication of rapid self-healing thermoset polymer by the encapsulation of low-viscosity unsaturated vinyl ester resin and methyl ethyl ketone peroxide for the corrosion
    Authors: A. Khavand, S. Hassanajili
    Journal: Polymer Bulletin
    Year: 2024


  • Development and characterization of bio-based polyurethane flexible foams containing silver nanoparticles for efficient dermal healing application
    Authors: M.M. Soltanzadeh, M.R. Hojjati, S. Hassanajili, A.A. Mohammadi
    Journal: New Journal of Chemistry
    Year: 2024


  • Enhanced Natural Gas Sweetening with Ultralow H₂S Concentration via Polycarbonate-Silica Mixed Matrix Membranes
    Authors: R. Sadeghi, S. Hassanajili
    Journal: Korean Journal of Chemical Engineering
    Year: 2024


  • Zoledronate loaded polylactic acid/polycaprolactone/hydroxyapatite scaffold accelerates regeneration and led to enhance structural performance and functional ability of the radial bone defect in rat
    Authors: A. Oryan, S. Hassanajili, S. Sahvieh
    Journal: Iranian Journal of Veterinary Research
    Year: 2023


Conclusion

Prof. Dr. Shadi Hassanajili represents an exceptional blend of academic brilliance, pioneering research, and institutional leadership. From her early academic pursuits in chemical and polymer engineering to her current role as a professor and innovator, she has consistently advanced the boundaries of knowledge. Her contributions in biomedical polymers, nanocomposites, and environmental applications reflect both scientific depth and societal relevance. Her career stands as a testament to the role of dedicated scholarship in driving innovation, inspiring students, and shaping industries.