Sanboh Lee | Materials Science | Best Researcher Award

Prof. Sanboh Lee | Materials Science | Best Researcher Award

National Tsing Hua University | Taiwan

Author Profile

Scopus

Orcid

🌱 Early Academic Pursuits

Prof. Sanboh Lee's journey into materials science began with a BS in Physics from Fu Jen Catholic University (1970), followed by an MS in Physics from National Tsing Hua University (1972). His academic curiosity led him to pursue a PhD in Materials Science at the University of Rochester (1980), where he built a strong foundation in material properties and mechanics.

💼 Professional Endeavors

With a career spanning decades, Prof. Lee has been a Professor at National Tsing Hua University (1985-2018) and served as an Adjunct Professor at the University of Science and Technology Beijing since 2005. His global research contributions include visiting scholar roles at Lehigh University and guest scientist positions at the National Institute of Standards and Technology (NIST). His consultancy work with institutions like the University of Rochester, Oak Ridge National Laboratory, and the University of Tennessee reflects his expertise in materials engineering.

🔬 Contributions and Research Focus

Prof. Lee’s research spans dislocation mechanics, optical and mechanical properties of polymers, hydrogen transport in low-carbon steels, and semiconductor devices. His groundbreaking studies include:

  • Dislocation and crack interactions in materials.
  • Gamma-ray effects on optical and mechanical properties.
  • Nano-imprint technology and micro-machining innovations.
  • Diffusion-induced and thermal stresses in materials.
  • Polymers and composite materials with enhanced mechanical and optical properties.
    With over 280 journal publications and 150 conference presentations, Prof. Lee has significantly shaped modern material science.

🏆 Accolades and Recognition

Prof. Lee has received numerous international awards, including:

  • Lifetime Achievement Award (2022) by VDGOOD® Professional Association.
  • SAS Eminent Fellow Membership (2021).
  • Fellow, Materials Research Society-Taiwan (2009).
  • Tsing Hua Chair Professor (2006-).
  • Fellow, ASM International, USA (2004) for contributions to fracture mechanics and transport processes in metals and polymers.
  • Outstanding Special Research Fellow (2002) by the National Science Council of Taiwan.
  • Who’s Who in Science and Engineering and other global recognitions in research excellence.

🌍 Impact and Influence

As an influential figure in materials science, Prof. Lee has contributed to academic committees, international symposia, and editorial boards. He has been an advisor, editor, and organizer for numerous scientific events and research journals. His leadership roles in organizations such as TMS, Materials Chemistry and Physics, and the Asia Pacific Academy of Materials underscore his global impact in material research and engineering.

🔮 Legacy and Future Contributions

Prof. Lee’s pioneering work in materials science, fracture mechanics, and nanotechnology continues to inspire new generations of researchers. His advancements in nano-imprint technology, hydrogen transport, and semiconductor materials are paving the way for next-generation engineering applications. As a Professor Emeritus, his legacy endures through ongoing collaborations, mentorship, and research innovations that will influence future breakthroughs in materials engineering and nanotechnology.

Publicaations


📄 Kinetic Analysis of the Cracking Behavior in Methanol-Treated Poly(methyl methacrylate)/Functionalized Graphene Composites

  • Journal: Journal of Composites Science
  • Year: 2025
  • Authors: Bing-Hong Yang, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee

📄 Cracking in UV-Irradiated Poly(methyl methacrylate)/Functionalized Graphene Composites: Solvent Effect

  • Journal: Journal of Polymer Research
  • Year: 2024
  • Authors: Bing-Hong Yang, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee

📄 Analysis of the Thermal Aging Kinetics of Tallow, Chicken Oil, Lard, and Sheep Oil

  • Journal: Molecules
  • Year: 2024
  • Authors: Yun-Chuan Hsieh, Hao Ouyang, Yulin Zhang, Donyau Chiang, Fuqian Yang, Hsin-Lung Chen, Sanboh Lee

📄 Creep-Recovery Deformation of 304 Stainless-Steel Springs Under Low Forces

  • Journal: Mechanics of Materials
  • Year: 2024
  • Authors: Ming-Yen Tsai, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee

📄 A Mechanical Model for Stress Relaxation of Polylactic Acid/Thermoplastic Polyurethane Blends

  • Journal: Journal of Composites Science
  • Year: 2024
  • Authors: Yi-Sheng Jhao, Hao Ouyang, Chien-Chao Huang, Fuqian Yang, Sanboh Lee

 

Guodong Tang | Materials Science | Best Researcher Award

Prof. Guodong Tang | Materials Science | Best Researcher Award

Nanjing University of Science and Technology | China 

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 📚

Prof. Guodong Tang's academic journey began with his foundational studies that led him to become a renowned researcher in the field of thermoelectrics and condensed matter physics. He is currently a professor at Nanjing University of Science and Technology. Over the years, he has honed his expertise in thermoelectric materials, magnetic materials, and condensed matter physics, contributing to the advancement of material science with innovative research. His dedication to understanding the interactions of materials at the atomic level has made him a pivotal figure in his field.

Professional Endeavors 💼

Prof. Tang has been serving as a professor at Nanjing University of Science and Technology since 2018, leading cutting-edge research in thermoelectric materials. His role extends beyond teaching as he is deeply involved in various research projects, including those funded by the National Natural Science Foundation of China. His focus has been on exploring new thermoelectric materials and their applications in energy efficiency and environmental sustainability. His professional career has been marked by a strong emphasis on collaboration, both within academic circles and with industry, driving forward innovation in material sciences.

Contributions and Research Focus 🔬

Prof. Tang's research has significantly advanced the understanding of thermoelectric and magnetic materials. His work on the development of high-performance SnSe and SnTe polycrystals has led to breakthroughs in energy conversion technology. His research focuses on understanding the role of metavalent bonds and dopant orbitals, which are essential for designing materials with low thermal conductivity and high thermoelectric efficiency. Prof. Tang's contributions are reshaping how scientists approach material design for energy applications, including efficient energy harvesting and storage systems.

Accolades and Recognition 🏆

Prof. Tang has earned widespread recognition for his pioneering work in thermoelectric materials. His research has been published in top-tier journals such as Nature Communications, Energy & Environmental Science, and Advanced Functional Materials. These publications have significantly impacted the academic community and are cited extensively in related fields. His work continues to inspire new research directions and has earned him prestigious awards, including recognition from major scientific institutions and research organizations.

Impact and Influence 🌍

Prof. Tang’s research has not only advanced scientific understanding but also has real-world applications that address global challenges. His work on thermoelectric materials, particularly the innovative designs of SnSe and SnTe, holds promise for improving energy conversion systems and reducing environmental impacts. The impact of his research extends into sustainable energy solutions, where his materials can lead to better energy storage and efficiency in power generation. His work influences the global scientific community, helping shape the future of energy technologies.

Legacy and Future Contributions 🌱

As a leader in the field of thermoelectrics, Prof. Tang's legacy will be defined by his groundbreaking research in material science. His continued work on improving the performance of thermoelectric materials positions him to make significant contributions to energy efficiency and sustainability in the future. With ongoing projects funded by prestigious institutions, Prof. Tang is poised to remain at the forefront of his field, influencing future generations of scientists and engineers. His work will continue to have a lasting impact on energy technologies, offering new solutions to the world's growing energy demands.

 

Publications


  • 📄 Interplay between metavalent bonds and dopant orbitals enables the design of SnTe thermoelectrics
    Authors: Tang, G., Liu, Y., Yang, X., Yu, Y., Wuttig, M.
    Journal: Nature Communications, Year: 2024

  • 📄 Divacancy and resonance level enables high thermoelectric performance in n-type SnSe polycrystals
    Authors: Gong, Y., Dou, W., Lu, B., Wu, H., Tang, G.
    Journal: Nature Communications, Year: 2024

  • 📄 Improving thermoelectric properties in double half-Heusler M8FexNi8−xSb8 (M = TiZrHfNb)-InSb compounds via synergistic multiscale defects and high-mobility carrier injection
    Authors: Wang, C., Cong, D., Tang, G., Zhou, X., Li, J.
    Journal: Chemical Engineering Journal, Year: 2024

  • 📄 High wide-temperature-range thermoelectric performance in GeTe through hetero-nanostructuring
    Authors: Zhang, Q., Ying, P., Farrukh, A., Chen, G., Tang, G.
    Journal: Acta Materialia, Year: 2024

  • 📄 CdSe Quantum Dots Enable High Thermoelectric Performance in Solution-Processed Polycrystalline SnSe
    Authors: Dou, W., Gong, Y., Huang, X., Ying, P., Tang, G.
    Journal: Small, Year: 2024

 

Rubby Mahajan | Materials Science | Best Researcher Award

Dr. Rubby Mahajan | Materials Science | Best Researcher Award

Shri Mata Vaishno Devi University | India

Author Profile

Scopus

Google Scholar

Early Academic Pursuits

Dr. Rubby Mahajan embarked on her academic journey with a strong foundation in Physics, earning a Ph.D. in 2021 from Shri Mata Vaishno Devi University, Katra. Her doctoral research focused on the synthesis and spectral studies, particularly in spectroscopy, following a M.Sc. in Condensed Matter Physics and a B.Sc. with a diverse curriculum including English, Mathematics, Physics, and Computer Applications.

Professional Endeavors

Dr. Rubby Mahajan has accumulated extensive teaching experience alongside her research pursuits. She taught for over four years at the School of Physics in SMVDU Katra during her research period. Additionally, she served as an Assistant Professor at University Institute of Engineering and Technology (UIET), Janglote, University of Jammu, and Govt. Degree College Kishtwar, Jammu & Kashmir.

Contributions and Research Focus

Dr. Rubby Mahajan's research revolves around the structural and optical characterization of various phosphors doped with rare-earth ions. Her work has significantly contributed to understanding the luminescent properties and applications of materials like magnesium pyrophosphate, zinc aluminate, and others. Her expertise lies in synthesizing and evaluating these materials for potential technological applications.

Accolades and Recognition

Dr. Rubby Mahajan's contributions have been recognized through numerous publications in reputable journals such as the Journal of Alloys and Compounds, Journal of Materials Science, and Optik. Her papers have consistently contributed to the scientific community, earning recognition in terms of impact factor and citation counts.

Impact and Influence

Beyond her research, Dr. Rubby Mahajan's impact extends to her active participation in conferences and symposia where she presents her findings, influencing the academic discourse in materials science and photonics. Her role as an educator has also influenced the next generation of physicists and researchers.

Legacy and Future Contributions

Dr. Mahajan's legacy in the field of spectroscopy and materials science continues to grow through her ongoing research and academic contributions. Her future endeavors aim to delve deeper into the synthesis of novel phosphors and their applications in areas such as solid-state lighting and displays.

 

Notable Publications

Spectroscopic study of yellowish white light emitting MgP2O6: Dy3+ phosphor 2024

Influence of Sm3+ ion doping on the surface and photoluminescence properties of Ba3Zr2O7 phosphor 2023 (5)

A review report on structural and optical characterization of rare earth/transition metal doped pyrophosphate phosphors 2022 (3)

Effect of Eu3+ activator on spectral investigation of red emitting MgP2O6 phosphate 2022 (4)

X-ray photoemission and spectral investigations of Dy3+ activated magnesium pyrophosphate phosphors 2019 (39)

 

 

 

Dinesh Kumar Chaudhary | Physics and Astronomy | Best Researcher Award

Dr. Dinesh Kumar Chaudhary | Physics and Astronomy | Best Researcher Award

Tribhuvan University | Nepal

Author Profile

Scopus

Orcid

Early Academic Pursuits

Dr. Dinesh Chaudhary commenced his academic journey with a Bachelor's degree in Physics from Tribhuvan University, Kathmandu, Nepal. He proceeded to earn a Master's and eventually a Ph.D. in Physics from the same institution, demonstrating a steadfast commitment to academic excellence from the outset.

Professional Endeavors

Throughout his career, Dr. Chaudhary has been actively engaged in teaching and research at Amrit Campus, Tribhuvan University. He has been imparting knowledge in both undergraduate and postgraduate physics courses since 2004 and 2010, respectively, showcasing his dedication to nurturing future generations of physicists.

Contributions and Research Focus

Dr. Chaudhary's research endeavors span a wide array of topics in the field of physics, with a particular emphasis on materials science and nanotechnology. He has conducted several research projects investigating the electrical, optical, and sensing properties of various semiconductor materials, contributing significantly to the advancement of knowledge in these areas.

Accolades and Recognition

His contributions to the field have been recognized through memberships in esteemed organizations such as the Nepal Physical Society and the IEEE EDS Society. Additionally, his research publications in national and international journals have garnered attention and acclaim from the scientific community, further solidifying his reputation as a prominent figure in his field.

Impact and Influence

Dr. Chaudhary's research has not only expanded the frontiers of scientific knowledge but also holds practical implications in areas such as sensor technology, renewable energy, and nanoelectronics. His work on gas sensors, thin-film technology, and nanomaterials has the potential to address pressing societal challenges and drive innovation in various industries.

Legacy and Future Contributions

As Dr. Chaudhary continues his academic journey, his legacy of scholarly excellence and dedication to research will undoubtedly inspire future generations of physicists. His ongoing efforts to explore new avenues in materials science and nanotechnology promise to yield further insights and innovations, shaping the landscape of physics research for years to come.

Notable Publications

Wide-range ethanol sensor based on a spray-deposited nanostructured ZnO and Sn–doped ZnO films 2024

Structural, mechanical, electronic and optical properties of MgZnO3 perovskite: First-principles study 2023 (2)

Influence of nanoparticle size on the characterization of ZnO thin films for formaldehyde sensing at room temperature 2023 (11)

Mechanism of Imprinting Process in the Ni-P Metallic Glass Films: A Molecular Dynamics Study 2023 (3)

Unsteady Radiative Maxwell Fluid Flow over an Expanding Sheet with Sodium Alginate Water-Based Copper-Graphene Oxide Hybrid Nanomaterial: An Application to Solar Aircraft 2022 (10)

Prescribed Thermal Activity in the Radiative Bidirectional Flow of Magnetized Hybrid Nanofluid: Keller-Box Approach 2022 (13)