Sanae Zriouel | Materials Science | Women Research Award

Prof. Sanae Zriouel | Materials Science | Women Research Award

Cadi Ayyad University | Morocco

Prof. Sanae Zriouel is an accomplished physicist with a strong research footprint, boasting 18 documents, 188 citations, and an h-index of 9. Her research encompasses graphene and related materials, physics of two-dimensional nanostructures, topological insulators, chalcopyrite semiconductors, perovskite structures, mathematical physics, and quantum and statistical physics, employing advanced numerical simulations including ab-initio calculations, DFT, Green functions, Monte Carlo, and molecular dynamics. She currently serves as Associate Professor of Physics at Cadi Ayyad University, Morocco, after holding positions as Assistant Professor at Sultan Moulay Slimane University and Researcher at Mohammed V University. Prof. Zriouel has a PhD in Mathematical Physics and a Habilitation Universitaire (HDR), complemented by engineering and bachelor degrees in electro-mechanics, physical sciences, and English studies. She has been recognized with numerous awards including full membership in OWSD and multiple national and international research honors. Prof. Zriouel has supervised over 30 master’s and bachelor students, contributed extensively to academic and research committees, coordinated national and international projects, and actively participated in more than 80 conferences. Her work in quantum materials, nanostructures, and simulations has significantly advanced theoretical and applied physics, reflecting her impact in the scientific community through research, mentorship, and collaborative projects worldwide.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

Amzaoued, M., Zriouel, S., & Mabrouki, M. (2025). DFT computational modeling studies of electronic and magnetic features of transition metal doped ZnTe. Physics Open, 24, 100275.

Ahsan, J., Rather, M., Sultan, K., Zriouel, S., & Hlil, E. (2025). In-depth study of double perovskite Sr₂NiTaO₆: Structural, electronic, thermoelectric, and spintronic properties for sustainable and high-performance applications. Computational Condensed Matter, 43, e01026.

Zriouel, S., Mhirech, A., Kabouchi, B., Bahmad, L., Fadil, Z., Husain, F., & Raorane, C. (2025). Investigating thermodynamic and magnetic behavior of graphullerene-like nanostructure using Monte Carlo techniques. Philosophical Magazine, 1–14.

Saber, N., Zriouel, S., Mhirech, A., Kabouchi, B., Bahmad, L., & Fadil, Z. (2023). Magnetic properties and magnetocaloric effects of the graphullerene-like 4−(Mg₄C₆₀) nanostructure: A Monte Carlo study. Modern Physics Letters B, 38, 2350199.

Zriouel, S., & Jellal, A. (2022). Engineering quantum tunneling effect of carriers in silicene field-effect transistors. arXiv preprint arXiv:2212.06072.

Zriouel, S. (2021). Phase transitions and critical dielectric phenomena of janus transition metal oxides. Materials Science and Engineering B, 267, 115087.

Zriouel, S., et al. (2020). Effect of p−d hybridization on half-metallic properties of some diluted II−IV−V₂ chalcopyrites for spintronic applications. Physica Scripta, 95, 045809.

Zriouel, S. (2020). Phase transitions and compensation behavior of graphene-based Janus materials. Journal of Magnetism and Magnetic Materials, 493, 165711.

Taychour, B., Zriouel, S., & Drissi, B. (2018). Half-metallic ferromagnetic character in ZnXP₂ (X = Ge, Si) chalcopyrites doped with Mn. Journal of Superconductivity and Novel Magnetism, 1–7.

Saidi, S., Zriouel, S., Drissi, B., & Maaroufi, M. (2018). First principles study of electronic and optical properties of Ag₂CdSnS₄ chalcogenides for photovoltaic applications. Computational Materials Science, 152, 291–299.

Saidi, S., Zriouel, S., Drissi, B., & Maaroufi, M. (2018). A DFT study of electro-optical properties of kesterite Ag₂CdSnX₄ for photovoltaic applications. Physica E, 103, 171–179.

 

Sandhya Rani Nayak | Chemistry | Best Researcher Award

Ms. Sandhya Rani Nayak | Chemistry | Best Researcher Award

Andhra University | India

Author Profile

Scopus

Orcid

Google Scholar

📚 Early Academic Pursuits

Ms. Sandhya Rani Nayak's academic excellence began with consistent performance in her school years and gained momentum through her B.Sc. in MPC (Mathematics, Physics, Chemistry) at Dr. B.R. Ambedkar University. She earned her M.Sc. in Analytical Chemistry from Andhra University with an impressive CGPA of 8.0, and later a B.Ed., reaffirming her passion for both science and education. Her progression into a PhD program demonstrates a continued commitment to high-level research in chemistry.

👩‍🔬 Professional Endeavors

Ms. Nayak has accumulated substantial teaching and lab experience. She served as a Lecturer in Analytical Chemistry at Dr. V.S. Krishna Government Degree & PG College and currently instructs in inorganic labs at Andhra University. These roles have allowed her to mentor students while sharpening her own experimental and pedagogical skills.

🔬 Research Focus and Contributions

Ms. Nayak's research primarily revolves around OLEDs, deep-blue emitters, donor–acceptor fluorophores, and molecular sensing. Her publication portfolio includes notable articles in high-impact journals such as Advanced Optical Materials, The Journal of Physical Chemistry C, Journal of Materials Chemistry C, and New Journal of Chemistry. Her work on benzimidazole-TPA conjugates and triphenylamine-imidazole-based fluorophores stands out for its innovation in developing stable and efficient optoelectronic materials.

🏆 Accolades and Recognition

Her academic rigor is evident from her qualifications in several competitive exams like APRCET (2021), OSSTET (2021), OTET (2022), APTET (2022), and APSET (2024). Additionally, she has actively participated in multiple national and international seminars, webinars, and symposia, further showcasing her engagement with the global scientific community.

🌍 Impact and Influence

Through her interdisciplinary research, Ms. Nayak has impacted the fields of organic electronics and environmental chemistry. Her investigations into fluorophores for OLEDs not only push the frontiers of energy-efficient display technology but also offer viable paths for pollution detection and chemical sensing.

🔮 Legacy and Future Contributions

With her PhD in progress and a strong foundation in both research and teaching, Ms. Nayak is poised to emerge as a leading scientist in the field of materials chemistry. Her future contributions are likely to expand toward sustainable optoelectronics and next-generation smart materials.

Publication


📄 HLCT Driven Twisted Benzo[d]thiazole Based D–A–D Fluorophores for High‐Performance, Two‐Component White LEDs
 Authors: Swetha Maredi, Diksha Thakur, Dhruba Jyoti Boruah, Sandhya Rani Nayak, Panneerselvam Yuvaraj, Sivakumar Vaidyanathan
 Journal: Chemistry – An Asian Journal
Year:  2025


📄 Broad-band Emissive Phenanthroimidazole-Based Donor–Acceptor Luminogens for Hybrid White Light Emitting Diodes and Sensors for Picric Acid Detection
 Authors: Swetha Maredi, Sandhya Rani Nayak, Md Intekhab Alam, Diksha Thakur, Sivakumar Vaidyanathan
 Journal: Journal of Materials Chemistry C
Year:  2025


📄White Light Emissive Eu(III) Complexes through Ligand Engineering and their Applications in Cool Near Ultraviolet White Light Emitting Diodes and Thermometer
 Authors: Swetha Maredi, Sibani Mund, Sandhya Rani Nayak, Samatha Devineni, C Subrahmanyam, Sivakumar Vaidyanathan
 Journal: ChemPhysChem
Year:  2024


📄Efficiency Boost in Non-Doped Blue Organic Light-Emitting Diodes: Harnessing Aggregation-Induced Emission – A Comprehensive Review
 Authors: Snigdhamayee Rana, Sandhya Rani Nayak, Sabita Patel, Sivakumar Vaidyanathan
 Journal: Journal of Materials Chemistry C
Year:  2024


📄 Structural Engineering of Deep-Blue Emitters (Imidazoles Integrated with Triphenylamine) Leads to EQE > 6% and High Color Purity (CIEy ∼ 0.09) for Solution-Processed OLEDs
 Authors: Sivakumar Girase, Jaipal Devesing Singh, Sunidhi Debata, Bhabana Priyadarshini Nayak, Sandhya Rani Nagar, Mangey Ram Jou, Jwo-Huei Patel, Sabita Vaidyanathan
 Journal: The Journal of Physical Chemistry C
Year:  2023


Priya Rani | Materials Science | Best Researcher Award

Dr. Priya Rani | Materials Science | Best Researcher Award

Central University of Haryana | India

Author Profile

Scopus

Google Scholar

Early Academic Pursuits

Dr. Priya Rani's academic journey commenced with a strong foundation in the sciences, demonstrated by her exemplary performance in matriculation (2011) where she secured a remarkable 93.4% in subjects including Science and Mathematics. She continued her academic excellence through her secondary education at HBSE, achieving 80% in 2013, focusing on Physics, Chemistry, Mathematics, English, and Hindi. Her undergraduate studies were completed at Govt. College for Women, Hisar, Kurukshetra University in 2016, where she excelled with a 77.1% and stood first in her college, majoring in Physics, Chemistry, and Mathematics.

Professional Endeavors

Dr. Rani embarked on her professional career by contributing to the field of Theoretical Condensed Matter Physics. She pursued her Ph.D. at Guru Jambheshwar University of Science & Technology, Hisar, which she was awarded in 2023. Her doctoral thesis, supervised by Prof. Sunita Srivastava and Dr. Ranjeet, focused on "Theoretical Study of Electronic and Optical Properties of Quantum Dots." Alongside her research, she has significant teaching experience, serving as a Guest Faculty at both the Department of Physics, Guru Jambheshwar University of Science & Technology, Hisar, and the Department of Physics & Astrophysics, Central University of Haryana.

Contributions and Research Focus

Dr. Rani has contributed extensively to the field of Theoretical Physics, particularly in Condensed Matter Physics and Quantum Dots. Her expertise lies in Density Functional Theory-based first principles software like SIESTA and Gaussian, and Effective Mass Approximation-based software such as Quantum Dot Lab. Her research interests include optoelectronic properties of quantum dots and their applications in bio-imaging and bio-sensing. She has published eight research papers, with five indexed in Scopus, and a book chapter, earning 57 citations, an h-index of 5, and an i10 index of 1.

Accolades and Recognition

Dr. Rani's academic and research excellence has been recognized through various awards and achievements. She was awarded the Junior Research Fellowship by UGC-CSIR in 2022 and served as a University Research Scholar at GJU S & T, Hisar in 2019. Notably, she received the Best Poster Award at the MMMCN-2023 Workshop at CUH, Mahendergarh. Additionally, she has served as a reviewer for prestigious journals like the New Journal of Physics, Physica Scripta, and Journal of Physics: Condensed Matter.

Impact and Influence

Dr. Rani's influence extends beyond her research contributions. She has actively participated in academic conferences and workshops, with a total of 23 attendances, including 11 oral presentations and six poster presentations. Her involvement in these events showcases her commitment to disseminating knowledge and engaging with the scientific community. As a guest faculty, she has imparted knowledge in advanced courses such as Advanced Quantum Mechanics, Optics, Semiconductor Physics, Mathematical Physics, Mechanics, and Electricity and Magnetism, influencing the next generation of physicists.

Legacy and Future Contributions

Dr. Priya Rani's legacy in Theoretical Condensed Matter Physics is marked by her rigorous research, academic excellence, and dedication to teaching. Her future contributions are anticipated to further the understanding of quantum dots and their applications, particularly in optoelectronics and bio-sensing. As she continues her career, her impact on the scientific community and her students will undoubtedly grow, fostering advancements in theoretical physics and its practical applications.

 

Notable Publications

Systematic tuning of optical and electronic properties of holey graphene quantum dots for UV applications 2024 (1)

Enhanced NIR fluorescence quantum yield of graphene quantum dots using dopants 2023 (4)

Effect of surface modification on optical and electronic properties of graphene quantum dots 2023 (26)

Tuning Properties of Graphene Quantum Dots by Passivation 2022 (7)

Study of electronic and optical properties of quantum dots 2022 (4)

Rubby Mahajan | Materials Science | Best Researcher Award

Dr. Rubby Mahajan | Materials Science | Best Researcher Award

Shri Mata Vaishno Devi University | India

Author Profile

Scopus

Google Scholar

Early Academic Pursuits

Dr. Rubby Mahajan embarked on her academic journey with a strong foundation in Physics, earning a Ph.D. in 2021 from Shri Mata Vaishno Devi University, Katra. Her doctoral research focused on the synthesis and spectral studies, particularly in spectroscopy, following a M.Sc. in Condensed Matter Physics and a B.Sc. with a diverse curriculum including English, Mathematics, Physics, and Computer Applications.

Professional Endeavors

Dr. Rubby Mahajan has accumulated extensive teaching experience alongside her research pursuits. She taught for over four years at the School of Physics in SMVDU Katra during her research period. Additionally, she served as an Assistant Professor at University Institute of Engineering and Technology (UIET), Janglote, University of Jammu, and Govt. Degree College Kishtwar, Jammu & Kashmir.

Contributions and Research Focus

Dr. Rubby Mahajan's research revolves around the structural and optical characterization of various phosphors doped with rare-earth ions. Her work has significantly contributed to understanding the luminescent properties and applications of materials like magnesium pyrophosphate, zinc aluminate, and others. Her expertise lies in synthesizing and evaluating these materials for potential technological applications.

Accolades and Recognition

Dr. Rubby Mahajan's contributions have been recognized through numerous publications in reputable journals such as the Journal of Alloys and Compounds, Journal of Materials Science, and Optik. Her papers have consistently contributed to the scientific community, earning recognition in terms of impact factor and citation counts.

Impact and Influence

Beyond her research, Dr. Rubby Mahajan's impact extends to her active participation in conferences and symposia where she presents her findings, influencing the academic discourse in materials science and photonics. Her role as an educator has also influenced the next generation of physicists and researchers.

Legacy and Future Contributions

Dr. Mahajan's legacy in the field of spectroscopy and materials science continues to grow through her ongoing research and academic contributions. Her future endeavors aim to delve deeper into the synthesis of novel phosphors and their applications in areas such as solid-state lighting and displays.

 

Notable Publications

Spectroscopic study of yellowish white light emitting MgP2O6: Dy3+ phosphor 2024

Influence of Sm3+ ion doping on the surface and photoluminescence properties of Ba3Zr2O7 phosphor 2023 (5)

A review report on structural and optical characterization of rare earth/transition metal doped pyrophosphate phosphors 2022 (3)

Effect of Eu3+ activator on spectral investigation of red emitting MgP2O6 phosphate 2022 (4)

X-ray photoemission and spectral investigations of Dy3+ activated magnesium pyrophosphate phosphors 2019 (39)

 

 

 

Kamal Bhujel | Physics and Astronomy | Best Researcher Award

Dr. Kamal Bhujel | Physics and Astronomy | Best Researcher Award

Mizoram University | India

Author Profile

Scopus

Orcid

Early Academic Pursuits

Dr. Kamal Bhujel's academic journey began in Darjeeling, India. He demonstrated academic excellence from a young age, achieving the third rank in his district during his secondary education at St. Alphonsus School. He continued his higher education at Vidyasagar Metropolitan College, Calcutta, earning a Bachelor of Science in PCM. His academic pursuits culminated in a Master of Science in Physics from Sunrise University, Rajasthan, and a Bachelor of Education from WBUTTPEA. Dr. Bhujel's commitment to education and learning is further evidenced by his completion of a PhD in Physics from Mizoram University, under the supervision of Prof. R. Thangavel, focusing on the synthesis and characterization of lead-free perovskite films for photovoltaic applications.

Professional Endeavors

Dr. Bhujel's professional career spans several roles in education and research. He started as a part-time teacher at Ramakrishna Higher Secondary School in 2016 and later joined Don Bosco High School in Mirik. He has guided numerous M.Sc. and M.Tech/B.Tech students in their research projects and has been instrumental in preparing students for competitive examinations such as NEET and JEE. His expertise extends to Vedic mathematics and psychological counseling, addressing students' mental health. Dr. Bhujel is also active in promoting educational systems like the International Baccalaureate and Montessori education. He has organized numerous science outreach programs and educational workshops in Darjeeling and other parts of West Bengal.

Contributions and Research Focus

Dr. Bhujel's research is primarily focused on the synthesis and characterization of nanomaterials, including nanoparticles, nanorods, and quantum dots. His work on lead-free perovskite solar cells, both inorganic and organic, highlights his commitment to developing sustainable energy solutions. He has explored various materials for hole and electron transport, including NiO and TiO/ZnO with doping, and has been involved in fabricating thin-film solar cell devices. His research contributions are documented in several published papers, covering topics like the properties of spin-coated zinc oxide thin films and the role of NiO thin films in perovskite solar cells.

Accolades and Recognition

Dr. Bhujel has been recognized for his academic and research contributions throughout his career. He has presented papers at various national and international conferences, such as the Mizoram Science Congress and the International Conference on Material Science. His research has been published in reputable journals like Materials Today: Proceedings and Applied Physics A. Additionally, he has authored a book, "Prasfutit Aawazharu," a collection of contemporary Nepali poems.

Impact and Influence

Dr. Bhujel's influence extends beyond academia into community engagement and education. He has been a life member of the Indian Science Congress Association and actively participates in organizations such as the Gorkha Himalayan Science Society and the Breakthrough Science Society. His outreach efforts have included science programs in rural areas, enhancing scientific literacy and interest among young students.

Legacy and Future Contributions

Dr. Bhujel's legacy is marked by his dedication to advancing scientific knowledge and education. His future contributions are poised to impact the fields of nanomaterials and renewable energy significantly. As he continues to mentor students and engage in cutting-edge research, Dr. Bhujel's work will undoubtedly inspire future generations of scientists and educators. His ongoing projects and collaborations with institutions like IIT-Bombay and NEHU-Shillong promise to yield further advancements in material science and solar energy research.

 

Notable Publications

Cu-doped NiO thin film's structural, optical, and electrical properties and its negative absorption behaviour in the Infra-Red region. 2024

Effect of ZnO nanoparticles on the Judd–Ofelt and radiative parameters of Sm ions in sol–gel silica matrix 2024

 

Fred Lisdat | Agricultural and Biological Sciences | Outstanding Scientist Award

Prof Dr. Fred Lisdat | Agricultural and Biological Sciences | Outstanding Scientist Award

Technical University of Applied Sciences Wildau | Germany

Author Profile

Scopus

Early Academic Pursuits

Dr. Fred Lisdat embarked on his academic journey in Chemistry at Humboldt University Berlin, culminating in a Ph.D. in 1992 and a Habilitation in 2004, both marked by outstanding achievements in sensor technology and biochemistry.

Professional Endeavors

With a tenure spanning decades, Dr. Lisdat has served as Chair of Biosystems Technology, Director of the Institute of Life Sciences and Biomedical Technologies, and Study Course Director of Biosystems Technology/Bioinformatics at TUASW, contributing significantly to academia.

Contributions and Research Focus

Dr. Lisdat's pioneering research spans biosensors, enzymatic recycling schemes, metabolite sensors, and label-free detection of DNA and proteins. His work on electron transfer through protein multilayers and biofuel cells has reshaped the landscape of bioelectrochemistry.

Accolades and Recognition

A recipient of numerous awards including the Karl Marx Fellowship and the Prize of Humboldt University, Dr. Lisdat's contributions have been lauded globally. His leadership roles in scientific organizations and advisory boards underscore his influence in the field.

Impact and Influence

Dr. Lisdat's 181 peer-reviewed publications, 4 patents, and 15 book chapters reflect his profound impact on academia and industry. His multidisciplinary approach and collaborative endeavors have propelled advancements in bioelectronics and chemical sensing.

Legacy and Future Contributions

As President of the Bioelectrochemical Society and head of the "Fachgruppe Chemo- und Biosensorik," Dr. Lisdat continues to shape the future of biosensing technologies. His commitment to innovation and mentorship ensures a lasting legacy in the scientific community.

Notable Publications

Photoelectrochemistry of a photosystem I – Ferredoxin construct on ITO electrodes 2023

Bio-inorganic hybrid structures for direct electron transfer to photosystem I in photobioelectrodes 2022 (9)

A Tandem Solar Biofuel Cell: Harnessing Energy from Light and Biofuels 2020 (9)

A Z-Scheme-Inspired Photobioelectrochemical H2O/O2 Cell with a 1 V Open-Circuit Voltage Combining Photosystem II and PbS Quantum Dots 2018 (38)

Nanobiomolecular Multiprotein Clusters on Electrodes for the Formation of a Switchable Cascadic Reaction Scheme 2014 (26)