Minseong Ko | Energy | Best Researcher Award

Prof. Minseong Ko | Energy | Best Researcher Award

Pukyong National University | South Korea

Author Profile

Scopus

Orcid

🌟 Early Academic Pursuits

Prof. Minseong Ko's journey into the world of materials science and battery technology began with a strong academic foundation. He obtained his Bachelor of Science degree from Pukyong National University in the Department of Materials Science and Engineering. His passion for advanced materials led him to pursue a Master’s degree at Gwangju Institute of Science & Technology (GIST), where he focused on enhancing the sensitivity of GMR Spin Valve Sensors. He continued his academic excellence by earning a Ph.D. in Battery Science & Technology from the Ulsan National Institute of Science & Technology (UNIST). Under the guidance of esteemed mentors, including Prof. Jaephil Cho, he gained deep insights into lithium-ion batteries (LIBs) and energy storage technologies. His academic journey culminated in postdoctoral research at the Massachusetts Institute of Technology (MIT), where he worked under the mentorship of Prof. Ju Li, further strengthening his expertise in nuclear science and engineering.

💼 Professional Endeavors

Currently, Prof. Minseong Ko serves as an Associate Professor in the Department of Metallurgical Engineering at Pukyong National University, Busan, Republic of Korea. His professional trajectory has been marked by his contributions to battery technology and materials science. Throughout his career, he has engaged in cutting-edge research, focusing on the synthesis and functionalization of carbon materials, modification of nanomaterials, and the development of coating equipment for mass production. His role as an educator is equally significant, having taught and mentored students in advanced energy storage materials at prestigious institutions such as UNIST and Pukyong National University.

📈 Contributions and Research Focus

Prof. Ko’s research primarily revolves around all-solid-state batteries and lithium-ion battery (LIB) materials. His pioneering work in synthesizing cathode and anode materials aims to enhance energy storage efficiency, improve fast-charging capabilities, and ensure the non-flammability of LIBs. His expertise extends to in-situ analysis of electrode materials and HPPC (Hybrid Pulse Power Characterization) testing for electric vehicles. Additionally, he has been instrumental in the development of large-scale synthesizing equipment for commercialization, bridging the gap between academic research and industrial application.

His research interests include:

  • Development of high-energy and fast-charging lithium-ion batteries
  • Synthesis and surface modification of electrode materials
  • Fabrication of electrochemical full-cells (pouch and coin-type)
  • Commercialization and mass production of battery materials

🏆 Accolades and Recognition

Prof. Ko’s contributions to battery science have been widely recognized in the academic and industrial sectors. His groundbreaking research has been published in top-tier journals, including Nature Communications, Advanced Energy Materials, ACS Nano, and Nano Letters. These publications highlight his significant contributions to the advancement of high-performance lithium-ion batteries and nanomaterial applications. His work has not only earned him academic accolades but has also positioned him as a leader in the field of energy storage technology.

🔋 Impact and Influence

Through his extensive research and publications, Prof. Ko has made a lasting impact on the field of energy storage. His studies on silicon-based anodes and high-capacity cathode materials have paved the way for more efficient and durable lithium-ion batteries, crucial for applications in electric vehicles and renewable energy systems. His collaborative approach has also contributed to global advancements in materials engineering, fostering partnerships between academia and industry to drive innovation. Beyond research, Prof. Ko is deeply committed to mentoring the next generation of scientists and engineers. His teaching philosophy emphasizes hands-on experimentation and industry collaboration, equipping students with the skills needed to tackle real-world challenges in battery technology.

🌍 Legacy and Future Contributions

Looking ahead, Prof. Minseong Ko aims to further revolutionize battery technology by developing next-generation solid-state batteries with enhanced safety and performance. His research endeavors continue to focus on improving the longevity, efficiency, and sustainability of energy storage systems. As a respected scientist and mentor, he is set to leave a lasting legacy in the fields of materials science and electrochemical energy storage. With his unwavering dedication to innovation and excellence, Prof. Ko’s contributions will undoubtedly shape the future of sustainable energy solutions, benefiting industries and societies worldwide.

 

Publications


📄 "Morphology Control of Al Oxide Coating to Suppress Interfacial Degradation in Ultra-high Nickel Cathode Materials"

  • Authors: Minseong Kim, Jiyun Park, Taewan Kim, Byeonggu Kang, Jaegeon Im, Minseong Ko, Sujong Chae

  • Journal: Electrochimica Acta

  • Year: 2025


📄 "Binder-free CNT-implanted Carbon Cloth and Carbon Felt as Cathode Modifier for Bioelectricity Generation in Sediment Microbial Fuel Cells"

  • Authors: Nurfarhana Nabila Mohd Noor, Rashida Misali, Minseong Kim, Jeongmok Park, Minseong Ko, In-Cheol Lee, Tadashi Hibino, Kyunghoi Kim

  • Journal: Journal of the Taiwan Institute of Chemical Engineers

  • Year: 2025


 

Mohammad Mahdavian | Materials Science | Best Researcher Award

Prof. Mohammad Mahdavian | Materials Science | Best Researcher Award

Institute for Color Science and Technology | Iran

Author Profile

Scopus

Orcid

🎓 Early Academic Pursuits

Prof. Mohammad Mahdavian embarked on his academic journey with a passion for polymer engineering. He earned his Bachelor's, Master's, and Ph.D. from Amirkabir University of Technology, consistently excelling in his studies. His Ph.D. research focused on evaluating azole derivatives as corrosion inhibitors, positioning him as a pioneer in chromate-free protective coatings. His academic excellence was evident in his top-ranking performance, with an impressive GPA of 3.94 in both his postgraduate degrees.

💼 Professional Endeavors

With a career spanning academia and industry, Prof. Mahdavian has played a crucial role in advancing polymer coatings and corrosion protection. He currently serves as a Professor at the Institute for Color Science and Technology (ICST), leading the Surface Coatings and Corrosion Department. His previous roles include Assistant and Associate Professorships at ICST and Sahand University of Technology, along with leadership roles in postgraduate education and international scientific collaborations. Parallel to his academic career, he has contributed to industrial innovation as a Coating Scientist at Atlas Protecting Coating (APC) and R&D Deputy at Khosh Paint Company (KPC).

🔬 Contributions and Research Focus

Prof. Mahdavian’s research is at the forefront of material science, specializing in nano-particles, polymer and silane coatings, conversion coatings, and corrosion-resistant technologies. His expertise extends to electrochemistry, metal-organic frameworks (MOFs), and layered double hydroxides (LDHs). His prolific contributions include over 200 scientific papers in esteemed international journals, solidifying his reputation as a thought leader in protective coatings. His innovative approach has led to multiple patents, including hybrid organic-inorganic corrosion inhibitors and nanocomposite coatings.

🏆 Accolades and Recognition

Prof. Mahdavian's outstanding contributions to material science have earned him widespread recognition. He has been ranked among the top 2% of scientists globally by Elsevier BV and Stanford University and acknowledged as a top reviewer by Web of Science. His research excellence has been further honored by prestigious awards, including the Distinguished Paper Award from the American Cleaning Institute and the Preeminent Scientist Award from the National Science Foundation of Iran. Additionally, he has been recognized as an Outstanding Researcher by the Ministry of Science and Technology.

🌍 Impact and Influence

Beyond research, Prof. Mahdavian has made a profound impact through mentorship and leadership. He has guided numerous MSc and Ph.D. students, fostering innovation in corrosion protection. As the Head of International Scientific Cooperation at ICST, he has facilitated global research collaborations, further amplifying his influence in the field. His teaching expertise spans various advanced subjects, including corrosion engineering, polymer coatings, and chemical reactor design, shaping the next generation of engineers and researchers.

🚀 Legacy and Future Contributions

Prof. Mahdavian’s contributions to polymer engineering and protective coatings continue to shape the future of corrosion-resistant materials. His ongoing research projects, including anti-icing coatings for wind turbines and graphene-based composite coatings, highlight his commitment to industrial innovation and sustainability. With a legacy of scientific excellence, mentorship, and groundbreaking research, he remains a visionary leader poised to drive further advancements in material science and engineering.

 

Publications


📖 Unlocking the Potential of FTIR for Corrosion Inhibition Prediction Exploiting Principal Component Analysis: Machine Learning for QSPR Modeling
Journal: Journal of the Taiwan Institute of Chemical Engineers
Year: 2025
Authors: A. Sadeghi, M. Shariatmadar, S. Amoozadeh, A. Mahmoudi Nahavandi, M. Mahdavian


📖N-Doped-GO@Zn Nano-Layers Filled Epoxy Composite with Superior Mechanical and Anti-Corrosion Properties
Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Year: 2024
Authors: Motahhare Keramatinia, Bahram Ramezanzadeh, Mohammad Mahdavian


📖Adiantum Capillus-Veneris Extract as a Sustainable Inhibitor to Mitigate Corrosion in Acid Solutions: Experimental, Machine-Learning Simulation, and Multiobjective Optimization
Journal: Langmuir
Year: 2024
Authors: Mahya Olfatmiri, Mohammad-Bagher Gholivand, Mohammad Mahdavian, Alireza Mahmoudi Nahavandi


📖 Falcaria vulgaris Leaves Extract as an Eco-Friendly Corrosion Inhibitor for Mild Steel in Hydrochloric Acid Media
Journal: Scientific Reports
Year: 2023
Authors: Mohammadreza Alimohammadi, Mohammad Ghaderi, S. A. Ahmad Ramazani, Mohammad Mahdavian


📖 Assessment of Synthesis Conditions on the Corrosion Inhibitive Features of ZIF-67 MOF
Journal: Surface and Coatings Technology
Year: 2023
Authors: D. Aliyari, M. Mahdavian, B. Ramezanzadeh


 

Shengyang Dong | Materials Science | Best Researcher Award

Prof. Shengyang Dong | Materials Science | Best Researcher Award

Nanjing University of Information Science and Technology | China

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 📚

Prof. Shengyang Dong embarked on his academic journey at Nanjing University of Aeronautics and Astronautics, where he earned his Doctor of Engineering degree in June 2019. During his Ph.D., he had the invaluable opportunity to study as an exchange scholar at Oregon State University under the guidance of Prof. Xiulei Ji (2016–2017). This exposure enriched his expertise and broadened his research horizons. He later joined Nanjing University of Information Science and Technology, marking the start of an illustrious academic career. Prof. Dong’s academic roots laid the foundation for his groundbreaking work in sustainable energy storage and conversion systems.

Professional Endeavors 🏛️

After joining Nanjing University of Information Science and Technology, Prof. Dong dedicated himself to advancing research in energy storage. As a Macao Young Scholar (2023–2025), he expanded his professional experience at the University of Macau. His efforts have resulted in the successful completion of seven research projects and the publication of 61 SCI papers, garnering over 5,300 citations. Prof. Dong has also made significant contributions through consultancy projects, editorial roles, and collaborations with renowned researchers worldwide. His professional journey reflects a blend of academic rigor and innovative vision.

Contributions and Research Focus 🔬

Prof. Dong’s research primarily targets sustainable energy storage and conversion technologies, focusing on aqueous batteries, Na-ion batteries, and dual-ion batteries. He pioneered studies on the electrode–charge carrier ion interaction, revealing its profound impact on electrochemical performance. By exploring the role of chemical bonding, such as hydrogen bonds in NH4+ and metal oxide systems, he introduced novel factors influencing battery design. These findings have paved new paths for optimizing electrode and charge carrier interactions, offering a transformative approach to energy storage device development.

Accolades and Recognition 🏆

Prof. Dong's achievements have earned him recognition in academic and professional circles. He holds nine patents and has contributed chapters to two notable books, enhancing the understanding of energy storage systems. He serves on the editorial boards of leading journals like Materials Research Letters and Rare Metals. His contributions to the field are widely acknowledged, with collaborators spanning institutions such as Zhejiang University, Nanjing Tech University, and the City University of Hong Kong. Prof. Dong’s work continues to inspire innovation and collaboration in energy storage research.

Impact and Influence 🌍

The impact of Prof. Dong’s research extends beyond academic publications. His insights into electrode–ion interactions have reshaped the design principles for electrochemical storage devices, influencing both theoretical studies and practical applications. By addressing challenges in sustainability and performance, his work contributes significantly to global efforts in developing efficient energy storage solutions. His patents and consultancy projects underscore the translational impact of his research, bridging the gap between academia and industry.

Legacy and Future Contributions 🔮

As an academic leader, Prof. Dong’s legacy lies in his transformative contributions to sustainable energy technologies. His dedication to mentoring the next generation of scientists, collaborating with global experts, and exploring innovative research avenues ensures a lasting impact. Looking ahead, his work promises to drive advancements in energy storage solutions, aligning with the world’s transition to renewable energy systems. With a robust foundation and a visionary approach, Prof. Dong is poised to leave an enduring mark on the field of energy storage and beyond.

 

Publications


📄Fast synthesis of high-entropy oxides for lithium-ion storage
Author(s): Ren, R., Xiong, Y., Xu, Z., Yin, K., Dong, S.
Journal: Chemical Engineering Journal
Year: 2024


📄Ru-induced lattice expansion of metallic Co with favorable surface property for high-efficiency water electrolysis
Author(s): Shen, J., Zhang, M., Huang, Y., Wang, S., Shao, H.
Journal: Applied Catalysis B: Environmental
Year: 2024


📄Aqueous “rocking-chair” Mn-ion battery based on an industrial pigment anode
Author(s): Dong, S., Xu, Z., Cao, Z., Li, J., Dong, X.
Journal: Chemical Engineering Journal
Year: 2024


📄Synthesis of spinel (Mg₀.₂Co₀.₂Ni₀.₂Cu₀.₂Zn₀.₂)Fe₂O₄ in seconds for lithium-ion battery anodes
Author(s): Ren, R., Wu, D., Zhang, J., Zhang, Y., Dong, S.
Journal: Journal of Materials Chemistry A
Year: 2024


📄3D Printing of MXene-Enhanced Ferroelectric Polymer for Ultrastable Zinc Anodes
Author(s): Zhu, G., Zhang, H., Lu, J., Pang, H., Zhang, Y.
Journal: Advanced Functional Materials
Year: 2024


 

Lin Ge | Materials Science | Best Researcher Award

Prof. Lin Ge | Materials Science | Best Researcher Award

Nanjing Tech University | China

Author Profile

Orcid

🌱 Early Academic Pursuits

Dr. Lin Ge’s academic journey began at Nanjing Tech University, where he obtained his degrees, showcasing his early dedication to materials science. His academic excellence and curiosity led him to pursue advanced studies in materials engineering, with a specific focus on Solid Oxide Cells. During his time as a visiting scholar and postdoctoral researcher at Nanyang Technological University, he broadened his expertise, gaining valuable international exposure and engaging with advanced research methodologies.

🔬 Professional Endeavors

Currently, Dr. Lin Ge serves as an associate professor and the subdean of the College of Materials Science and Engineering at Nanjing Tech University. In this role, he not only advances his research but also mentors emerging engineers and scientists. He actively participates in significant projects funded by prestigious foundations, including the National Natural Science Foundation of China, the Natural Science Foundation of Jiangsu Province, and the China Postdoctoral Science Foundations, underscoring his contributions to advancing materials science.

📚 Contributions and Research Focus

Dr. Ge’s research primarily centers around Solid Oxide Cells, a field where he has authored over 60 scientific publications. His expertise in this area has positioned him as a notable contributor to the literature on materials engineering and energy storage. As a longstanding reviewer for various scientific journals, he continues to shape research standards in his field. Dr. Ge is also an active member of the Composite Material Society of Jiangsu Province, contributing to the materials science community on a broader scale.

🏆 Accolades and Recognition

Dr. Lin Ge’s work has earned him recognition within both academia and the scientific community. His funded research projects and extensive publications underscore his contributions, and his role as an annual reviewer for renowned journals, including Applied Catalysis B: Environmental and the Journal of Power Sources, is a testament to his respected expertise.

🌍 Impact and Influence

Through his research on Solid Oxide Cells, Dr. Ge has significantly impacted energy storage and environmental sustainability. His contributions to materials science extend beyond his publications, as his work on Solid Oxide Cells holds potential for future technological advancements in clean energy solutions. His influence is also reflected in his mentorship of students and peers, fostering an environment of innovation and intellectual curiosity.

🌟 Legacy and Future Contributions

Dr. Ge’s dedication to materials science positions him as a forward-thinking leader in the field, paving the way for innovations in sustainable energy and advanced ceramics. As he continues to contribute through his research, mentorship, and publications, Dr. Ge is poised to leave a lasting legacy, inspiring future generations of scientists and engineers to explore the vast potential of materials science and its applications in addressing global challenges.

 

Publications


📄 Superior Durability and Activity of a Benchmark Triple‐Conducting Cathode by Tuning Thermo‐Mechanical Compatibility for Protonic Ceramic Fuel Cells

  • Journal: Advanced Functional Materials
  • Year: 2024
  • Authors: Zhexiang Yu, Lin Ge, Qing Ni, Yifeng Zheng, Han Chen, Xingkai Zhou, Yaowei Mi, Bochang Shi, Xiaole Yu, Bangze Wu, et al.

📄 Solid Oxide Electrolyzer Positive Electrodes with a Novel Microstructure Show Unprecedented Stability at High Current Densities

  • Journal: Journal of Materials Chemistry A
  • Year: 2023
  • Authors: Qing Ni, Yu Li, Zongchao Zhu, Zhexiang Yu, Dong Xu, Xiaoming Hua, Yi Zhen, Lin Ge, Lei Bi

 

Giovanna Maresca | Materials Science | Best Researcher Award

Dr. Giovanna Maresca | Materials Science | Best Researcher Award

Customs Agency and Monopolies | Italy

Author Profile

Scopus

Orcid

Early Academic Pursuits

Dr. Giovanna Maresca pursued her higher education with a focus on chemistry and materials science. She engaged in significant research from the outset of her career, beginning with her involvement in the project "Hyrides as high-capacity anodes for lithium ion batteries" at "La Sapienza" University of Rome. Her academic journey included synthesizing and studying electrolytic systems compatible with high-capacity hydride-based anodes, laying a strong foundation for her future research endeavors in battery technology.

Professional Endeavors

Dr. Maresca has accumulated extensive professional experience through various prestigious fellowships and research grants across multiple countries:

* Chemist at Customs and Monopolies Agency (ADM), Bologna, Italy (04/18/2022 – CURRENT): Dr. Maresca currently works in this role, applying her expertise in chemistry within the regulatory framework of excise, customs, and monopolies.

* Visiting Fellow at Bernal Institute, University of Limerick, Ireland (01/05/2023 – 30/06/2023): She worked on characterizing post-mortem silicon, hard carbon, and Na-NMO electrodes through XPS and FE-SEM analyses under the supervision of Kevin M. Ryan.

* Research Grant at ENEA Casaccia, Cesano, Italy (04/03/2021 – 18/04/2022): Participated in the European project Si-Drive, focusing on the synthesis and characterization of ionic liquids and innovative electrolytes for lithium batteries. She worked under the guidance of Dr. Giovanni Battista Appetecchi and Prof. Sergio Brutti.

* Samsung Research Fellow at "La Sapienza" University of Rome, Italy (09/30/2016 – 10/30/2020): Worked on the project "Solid-state batteries using novel composite anodes" in collaboration with SAMSUNG, focusing on the synthesis and optimization of electrode composite materials. This fellowship included a period as a visiting fellow at Samsung R&D Institute Japan, studying electrode materials for solid-state batteries under the supervision of Seitaro Ito and Yuichi Aihara.

  • Research Fellow at Politecnico di Turin DISAT – Applied Science Department Technology/ENEA Casaccia, Turin, Italy (15/03/2014 – 14/03/2015): Engaged in the European project MARS-EV, working on the synthesis and characterization of ionic liquids and innovative electrolytes for lithium batteries.

Contributions and Research Focus

Dr. Maresca's research primarily focuses on the development and optimization of materials for energy storage, particularly lithium-ion and solid-state batteries. Her contributions include:

* Synthesis and characterization of innovative electrolytes and electrode materials.

* Development of high-capacity anodes and optimization of composite materials for solid-state batteries.

* Extensive chemical-physical characterization and electrochemical testing of battery components.

* Pioneering research on post-mortem analysis of battery electrodes to improve their performance and longevity.

Accolades and Recognition

Dr. Maresca has been recognized for her significant contributions to battery technology and materials science through prestigious fellowships and research grants. Her collaborations with leading institutions and corporations such as Samsung and ENEA underscore her impact in the field.

Impact and Influence

Dr. Maresca's work has had a profound impact on the development of next-generation energy storage solutions. Her research on high-capacity anodes and solid-state batteries contributes to advancements in electric vehicle technology and sustainable energy storage systems. Her collaborative efforts with international research institutions have also facilitated the exchange of knowledge and innovation in materials science.

Legacy and Future Contributions

Dr. Maresca's continued research and professional activities promise to further enhance the performance and safety of battery technologies. Her ongoing work at the Customs and Monopolies Agency, along with her involvement in cutting-edge research projects, positions her as a key contributor to the future of sustainable energy storage solutions. Her legacy lies in her commitment to advancing battery technology, paving the way for more efficient and durable energy storage systems in the years to come.

 

Notable Publications

Improved Compatibility of α‐NaMnO2 Cathodes at the Interface with Ionic Liquid Electrolytes 2024

Outstanding Compatibility of Hard-Carbon Anodes for Sodium-Ion Batteries in Ionic Liquid Electrolytes 2023 (1)

Silicon‐Based Composite Anodes for All‐Solid‐State Lithium‐Ion Batteries Conceived by a Mixture Design Approach 2023 (5)

Sodium-Conducting Ionic Liquid Electrolytes: Electrochemical Stability Investigation 2022 (8)

Sn/C composite anodes for bulk-type all-solid-state batteries 2021 (9)

 

 

 

 

Rufina Zilberg | Chemistry | Best Researcher Award

Mrs. Rufina Zilberg | Chemistry | Best Researcher Award

Ufa University of Science and Technology | Russia

Author Profile

Scopus

Orcid

Early Academic Pursuits

Mrs. Rufina Zilberg commenced her academic journey by acquiring a degree in Chemistry from Bashkir State University in 2003. She continued her pursuit of knowledge, culminating in the attainment of a Candidate of Chemical Sciences and Docent degrees, signifying her dedication and expertise in the field.

Professional Endeavors

Currently serving as an Associate Professor at Ufa University of Science and Technology, Mrs. Zilberg has devoted herself to the Department of Analytical Chemistry. Throughout her career, she has contributed significantly to the realm of electroanalytical chemistry and chemically modified electrodes, particularly in the development of enantiosensors.

Contributions and Research Focus

With over 200 publications to her credit, including a monograph and two reviews, Mrs. Zilberg's research focuses on voltammetric sensors and multisensory systems. Her pioneering work revolves around the recognition of enantiomers of antiarrhythmic drugs and vital amino acids. She has extensively explored composite materials for sensor construction, such as polyarylene phthalides and chitosan with various additives, resulting in groundbreaking advancements in sensor technology.

Accolades and Recognition

Mrs. Zilberg's prolific research endeavors have garnered recognition both nationally and internationally. Her scholarly contributions have earned her a Hirsch index of 12 in Web of Science and 21 in the Russian Science Citation Index (RSCI). Additionally, under her guidance, her students have achieved notable success in prestigious competitions, such as the UMNIK competition and the Student STARTUP.

Impact and Influence

The impact of Mrs. Zilberg's work extends beyond the academic realm. Her research findings, disseminated through esteemed journals, have not only advanced scientific knowledge but also hold promise for practical applications, particularly in pharmaceutical analysis. Her innovative approaches to sensor design and her commitment to excellence have inspired countless peers and students alike.

Legacy and Future Contributions

As Mrs. Zilberg continues her scholarly journey, her legacy is one of unwavering dedication to advancing the frontiers of analytical chemistry. Her future contributions are poised to further revolutionize sensor technology, offering novel solutions to complex analytical challenges and leaving an indelible mark on the field for generations to come.

Notable Publications

Chiral Octahedral Cobalt(III) Complex Immobilized on Carboblack C as a Novel Robust and Readily Available Enantioselective Voltammetric Sensor for the Recognition of Tryptophan Enantiomers in Real Samples 2024

A Voltammetric Sensor Based on Aluminophosphate Zeolite and a Composite of Betulinic Acid with a Chitosan Polyelectrolyte Complex for the Identification and Determination of Naproxen Enantiomers 2023 (2)

 

 

 

 

Welela Meka | Chemistry | Editorial Board Member

Mr. Welela Meka | Chemistry | Editorial Board Member

Mattu University | Ethiopia

Author Profile

Sopus

Early Academic Pursuits

Welela Meka embarked on her academic journey at Mettu University, Ethiopia, where she earned her BSc degree in Chemistry in 2017 with an outstanding CGPA of 3.91. Her commitment to academic excellence laid the foundation for her future endeavors.

Professional Endeavors

Since 2020, Welela Meka has been serving as a Lecturer in the Department of Chemistry at Mettu University, contributing to the education and development of undergraduate students. Prior to this role, from 2017 to 2018, she gained experience as a Graduate Assistant-I in the same department, showcasing her dedication to academic growth.

Contributions and Research Focus

Welela Meka actively engages in research, with a focus on Organic Chemistry, Polymer Chemistry, Natural Product Chemistry, Material Chemistry/Sciences, Biochemistry, Medicinal Chemistry, Chemical Engineering, and Applied Chemistry. Her diverse research projects encompass topics such as biodiesel production, antioxidant activity of plant extracts, synthesis of novel derivatives, and the application of biopolymers in pharmaceutical and drug delivery.

Accolades and Recognition

Welela Meka's academic journey has been marked by excellence, evident in her CGPA achievements during both her BSc and MSc studies. Her noteworthy contributions to research, along with her commitment to teaching, have earned her recognition within the academic community.

Impact and Influence

As a lecturer and researcher, Welela Meka has a direct impact on the education of future scientists. Her work in various committees, including staff development and curriculum review, reflects her commitment to enhancing educational standards.

Legacy and Future Contributions

Welela Meka's legacy is shaped by her dedication to advancing knowledge in the field of chemistry. Her research outputs, committee involvement, and teaching contributions contribute to the university's academic environment. In the future, she aims to further explore innovative solutions in the realm of chemistry, leaving a lasting impact on the scientific community.

Notable Publications

Optimization and characterization of biodiesel from waste cooking oil using modified CaO catalyst derived from snail shell 2023 (5)

Pharmaceutical and drug delivery applications of pectin and its modified nanocomposites 2022 (23)

Pharmaceutical and drug delivery applications of chitosan biopolymer and its modified nanocomposite: A review 2022 (22)