Sanboh Lee | Materials Science | Best Researcher Award

Prof. Sanboh Lee | Materials Science | Best Researcher Award

National Tsing Hua University | Taiwan

Author Profile

Scopus

Orcid

🌱 Early Academic Pursuits

Prof. Sanboh Lee's journey into materials science began with a BS in Physics from Fu Jen Catholic University (1970), followed by an MS in Physics from National Tsing Hua University (1972). His academic curiosity led him to pursue a PhD in Materials Science at the University of Rochester (1980), where he built a strong foundation in material properties and mechanics.

💼 Professional Endeavors

With a career spanning decades, Prof. Lee has been a Professor at National Tsing Hua University (1985-2018) and served as an Adjunct Professor at the University of Science and Technology Beijing since 2005. His global research contributions include visiting scholar roles at Lehigh University and guest scientist positions at the National Institute of Standards and Technology (NIST). His consultancy work with institutions like the University of Rochester, Oak Ridge National Laboratory, and the University of Tennessee reflects his expertise in materials engineering.

🔬 Contributions and Research Focus

Prof. Lee’s research spans dislocation mechanics, optical and mechanical properties of polymers, hydrogen transport in low-carbon steels, and semiconductor devices. His groundbreaking studies include:

  • Dislocation and crack interactions in materials.
  • Gamma-ray effects on optical and mechanical properties.
  • Nano-imprint technology and micro-machining innovations.
  • Diffusion-induced and thermal stresses in materials.
  • Polymers and composite materials with enhanced mechanical and optical properties.
    With over 280 journal publications and 150 conference presentations, Prof. Lee has significantly shaped modern material science.

🏆 Accolades and Recognition

Prof. Lee has received numerous international awards, including:

  • Lifetime Achievement Award (2022) by VDGOOD® Professional Association.
  • SAS Eminent Fellow Membership (2021).
  • Fellow, Materials Research Society-Taiwan (2009).
  • Tsing Hua Chair Professor (2006-).
  • Fellow, ASM International, USA (2004) for contributions to fracture mechanics and transport processes in metals and polymers.
  • Outstanding Special Research Fellow (2002) by the National Science Council of Taiwan.
  • Who’s Who in Science and Engineering and other global recognitions in research excellence.

🌍 Impact and Influence

As an influential figure in materials science, Prof. Lee has contributed to academic committees, international symposia, and editorial boards. He has been an advisor, editor, and organizer for numerous scientific events and research journals. His leadership roles in organizations such as TMS, Materials Chemistry and Physics, and the Asia Pacific Academy of Materials underscore his global impact in material research and engineering.

🔮 Legacy and Future Contributions

Prof. Lee’s pioneering work in materials science, fracture mechanics, and nanotechnology continues to inspire new generations of researchers. His advancements in nano-imprint technology, hydrogen transport, and semiconductor materials are paving the way for next-generation engineering applications. As a Professor Emeritus, his legacy endures through ongoing collaborations, mentorship, and research innovations that will influence future breakthroughs in materials engineering and nanotechnology.

Publicaations


📄 Kinetic Analysis of the Cracking Behavior in Methanol-Treated Poly(methyl methacrylate)/Functionalized Graphene Composites

  • Journal: Journal of Composites Science
  • Year: 2025
  • Authors: Bing-Hong Yang, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee

📄 Cracking in UV-Irradiated Poly(methyl methacrylate)/Functionalized Graphene Composites: Solvent Effect

  • Journal: Journal of Polymer Research
  • Year: 2024
  • Authors: Bing-Hong Yang, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee

📄 Analysis of the Thermal Aging Kinetics of Tallow, Chicken Oil, Lard, and Sheep Oil

  • Journal: Molecules
  • Year: 2024
  • Authors: Yun-Chuan Hsieh, Hao Ouyang, Yulin Zhang, Donyau Chiang, Fuqian Yang, Hsin-Lung Chen, Sanboh Lee

📄 Creep-Recovery Deformation of 304 Stainless-Steel Springs Under Low Forces

  • Journal: Mechanics of Materials
  • Year: 2024
  • Authors: Ming-Yen Tsai, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee

📄 A Mechanical Model for Stress Relaxation of Polylactic Acid/Thermoplastic Polyurethane Blends

  • Journal: Journal of Composites Science
  • Year: 2024
  • Authors: Yi-Sheng Jhao, Hao Ouyang, Chien-Chao Huang, Fuqian Yang, Sanboh Lee

 

Camelia Cerbu | Materials Science | Best Researcher Award

Prof Dr. Camelia Cerbu | Materials Science | Best Researcher Award

Transilvania University of Brasov | Romania

Author Profile

Scopus

Orcid

Google Scholar 

🎓 Early Academic Pursuits

Dr. Camelia Cerbu's academic journey is deeply rooted in mechanical engineering. She began her education at the prestigious "Radu Negru" National College in Făgăraş, specializing in mathematics and physics. From there, she advanced to Transilvania University of Brașov, where she completed her Bachelor's and Master's degrees in Mechanical Engineering. Her focus on machine building technology and computer-aided design and technology marked the foundation of her career. Dr. Cerbu earned her Ph.D. in Engineering Sciences from the same university, where her thesis focused on optimizing parts made of composite materials under aggressive environmental conditions.

👩‍🏫 Professional Endeavors

Dr. Cerbu’s professional career spans both academia and industry. Early in her career, she worked as an engineer at IUS S.A. Brașov and the Automotive Institute of Brașov, where she specialized in research and computer-aided design. Since 2000, her focus has shifted toward academia at Transilvania University of Brașov. Over the years, she has risen through the ranks from Assistant Professor to full Professor. Currently, she supervises Ph.D. students in the field of Mechanical Engineering. Her teaching includes courses on strength of materials, mechanics of composite materials, and the dynamics of mechanical structures.

🔬 Contributions and Research Focus

Dr. Cerbu's research expertise lies in the strength of materials, elasticity, and the mechanics of composite materials. She has conducted extensive research on the effects of environmental factors like moisture and temperature on composite materials. Her work includes both experimental and analytical studies using advanced techniques such as finite element analysis and digital image correlation. Dr. Cerbu has coordinated numerous research projects, including studies on hybrid composite structures and their behavior in corrosive environments. Her contributions extend to research in polymeric materials used in challenging environmental conditions.

🏆 Accolades and Recognition

Dr. Cerbu’s academic and research excellence has earned her recognition both nationally and internationally. She has published over 39 papers indexed in Web of Science and authored 14 books. She holds a patent for a hybrid laminated composite material for outdoor applications. Additionally, Dr. Cerbu has presented her research at international institutions, including Tianjin University in China, where she was invited as a professor through the Erasmus+ program. With an H-index of 11 on Web of Science and 12 on Scopus, her impact on the academic community is evident.

🌍 Impact and Influence

As a CNATDCU member for the 2024-2028 term and a regular reviewer for prestigious scientific journals, Dr. Cerbu’s influence extends beyond her direct research. Her leadership roles at Transilvania University, including serving on various councils and heading research centers, underscore her commitment to advancing the field of mechanical engineering. She has also been instrumental in international academic partnerships, such as coordinating collaborations with Tianjin University of Commerce in China.

📜 Legacy and Future Contributions

Dr. Camelia Cerbu’s work in composite materials has set a benchmark for future research in the field, particularly in understanding how environmental factors affect mechanical structures. Her guidance of Ph.D. students ensures that her knowledge and expertise will be passed down to the next generation of engineers. As she continues to lead research at Transilvania University, her contributions will undoubtedly shape advancements in material science and mechanical engineering.

 

Publications


  • 📄 Effects of Rubber Core on the Mechanical Behaviour of the Carbon–Aramid Composite Materials Subjected to Low-Velocity Impact Loading Considering Water Absorption
  • Authors: Ursache, S., Cerbu, C., Hadăr, A., Petrescu, H.A.
  • Journal: Materials
  • Year: 2024

  • 📄 Characteristics of Carbon and Kevlar Fibres, Their Composites and Structural Applications in Civil Engineering—A Review
  • Authors: Ursache, Ș., Cerbu, C., Hadăr, A.
  • Journal: Polymers
  • Year: 2024

  • 📄  Investigation on Phoenix dactylifera/Calotropis procera Fibre-Reinforced Epoxy Hybrid Composites
  • Authors: Mazaherifar, M.H., Hosseinabadi, H.Z., Coșereanu, C., Timar, M.C., Georgescu, S.V.
  • Journal: Forests
  • Year: 2022

  • 📄  Evaluation of Wave Velocity in Orthotropic Media Based on Intrinsic Transfer Matrix
  • Authors: Crețu, N., Roșca, I.C., Stanciu, M.D., Gliga, V.G., Cerbu, C.
  • Journal: Experimental Mechanics
  • Year: 2022

  • 📄  Design Solutions for Slender Bars with Variable Cross-Sections to Increase the Critical Buckling Force
  • Authors: Botis, M.F., Cerbu, C.
  • Journal: Materials
  • Year: 2022

 

Pooja Rani | Mathematics | Best Researcher Award

Dr. Pooja Rani | Mathematics | Best Researcher Award

GMSSSS, Ratia | India

Author profile

Scopus

Early Academic Pursuits

Dr. Pooja Rani's academic journey began with a strong foundation in mathematics, culminating in a Ph.D. in Mathematics with a focus on "Mathematical Modeling of an Elastic and Thermoelastic Medium Due to Various Seismic Sources". Her educational qualifications include an M.Sc. in Mathematics, a B.Ed., and qualification for the NET JRF examination. Notably, she was awarded the Roll of Honor for achieving a high position in her graduation.

Professional Endeavors

With five years of teaching experience, Dr. Pooja Rani has established herself as a dedicated educator and researcher. Her professional endeavors have led her to delve into the intricate dynamics of thermoelastic materials, focusing on various theories of thermoelasticity.

Contributions and Research Focus

Dr. Pooja Rani's research revolves around the elastic and thermoelastic properties of materials, aiming to analyze dynamic problems within this domain. Her work encompasses the study of thermoelastic behavior in diverse geometries such as cylinders, disks, spheres, circular plates, and circular tubes. Through her research, she seeks to contribute to a deeper understanding of thermoelastic phenomena and their practical implications.

Accolades and Recognition

Dr. Pooja Rani's dedication and contributions to the field of mathematics have earned her recognition, including the prestigious Roll of Honor for her outstanding performance during her graduation. Additionally, her qualification for the NET JRF examination highlights her academic prowess and potential in research.

Impact and Influence

The research conducted by Dr. Pooja Rani holds significant potential for impact in both academic and practical spheres. By delving into the complex dynamics of thermoelastic materials, her work contributes to advancements in understanding material behavior under various conditions. This understanding has implications for fields such as structural engineering, seismology, and materials science.

Legacy and Future Contributions

Dr. Pooja Rani's legacy is marked by her dedication to advancing the understanding of thermoelasticity through mathematical modeling. Her research not only sheds light on fundamental principles but also lays the groundwork for practical applications in engineering and geophysics. As she continues her academic journey, her innovative contributions are poised to shape the future of research in thermoelastic materials, leaving a lasting impact on the scientific community.

Notable Publications

Thermoelastic stress analysis of a functionally graded annular rotating disc with radially varying properties 2024

Wave analysis in porous thermoelastic plate with microtemperature 2023

One Dimensional Steady Thermal Stresses in a Rotating Thick-walled Sphere made of Functionally Graded Material 2022