Guodong Tang | Materials Science | Best Researcher Award

Prof. Guodong Tang | Materials Science | Best Researcher Award

Nanjing University of Science and Technology | China 

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 📚

Prof. Guodong Tang's academic journey began with his foundational studies that led him to become a renowned researcher in the field of thermoelectrics and condensed matter physics. He is currently a professor at Nanjing University of Science and Technology. Over the years, he has honed his expertise in thermoelectric materials, magnetic materials, and condensed matter physics, contributing to the advancement of material science with innovative research. His dedication to understanding the interactions of materials at the atomic level has made him a pivotal figure in his field.

Professional Endeavors 💼

Prof. Tang has been serving as a professor at Nanjing University of Science and Technology since 2018, leading cutting-edge research in thermoelectric materials. His role extends beyond teaching as he is deeply involved in various research projects, including those funded by the National Natural Science Foundation of China. His focus has been on exploring new thermoelectric materials and their applications in energy efficiency and environmental sustainability. His professional career has been marked by a strong emphasis on collaboration, both within academic circles and with industry, driving forward innovation in material sciences.

Contributions and Research Focus 🔬

Prof. Tang's research has significantly advanced the understanding of thermoelectric and magnetic materials. His work on the development of high-performance SnSe and SnTe polycrystals has led to breakthroughs in energy conversion technology. His research focuses on understanding the role of metavalent bonds and dopant orbitals, which are essential for designing materials with low thermal conductivity and high thermoelectric efficiency. Prof. Tang's contributions are reshaping how scientists approach material design for energy applications, including efficient energy harvesting and storage systems.

Accolades and Recognition 🏆

Prof. Tang has earned widespread recognition for his pioneering work in thermoelectric materials. His research has been published in top-tier journals such as Nature Communications, Energy & Environmental Science, and Advanced Functional Materials. These publications have significantly impacted the academic community and are cited extensively in related fields. His work continues to inspire new research directions and has earned him prestigious awards, including recognition from major scientific institutions and research organizations.

Impact and Influence 🌍

Prof. Tang’s research has not only advanced scientific understanding but also has real-world applications that address global challenges. His work on thermoelectric materials, particularly the innovative designs of SnSe and SnTe, holds promise for improving energy conversion systems and reducing environmental impacts. The impact of his research extends into sustainable energy solutions, where his materials can lead to better energy storage and efficiency in power generation. His work influences the global scientific community, helping shape the future of energy technologies.

Legacy and Future Contributions 🌱

As a leader in the field of thermoelectrics, Prof. Tang's legacy will be defined by his groundbreaking research in material science. His continued work on improving the performance of thermoelectric materials positions him to make significant contributions to energy efficiency and sustainability in the future. With ongoing projects funded by prestigious institutions, Prof. Tang is poised to remain at the forefront of his field, influencing future generations of scientists and engineers. His work will continue to have a lasting impact on energy technologies, offering new solutions to the world's growing energy demands.

 

Publications


  • 📄 Interplay between metavalent bonds and dopant orbitals enables the design of SnTe thermoelectrics
    Authors: Tang, G., Liu, Y., Yang, X., Yu, Y., Wuttig, M.
    Journal: Nature Communications, Year: 2024

  • 📄 Divacancy and resonance level enables high thermoelectric performance in n-type SnSe polycrystals
    Authors: Gong, Y., Dou, W., Lu, B., Wu, H., Tang, G.
    Journal: Nature Communications, Year: 2024

  • 📄 Improving thermoelectric properties in double half-Heusler M8FexNi8−xSb8 (M = TiZrHfNb)-InSb compounds via synergistic multiscale defects and high-mobility carrier injection
    Authors: Wang, C., Cong, D., Tang, G., Zhou, X., Li, J.
    Journal: Chemical Engineering Journal, Year: 2024

  • 📄 High wide-temperature-range thermoelectric performance in GeTe through hetero-nanostructuring
    Authors: Zhang, Q., Ying, P., Farrukh, A., Chen, G., Tang, G.
    Journal: Acta Materialia, Year: 2024

  • 📄 CdSe Quantum Dots Enable High Thermoelectric Performance in Solution-Processed Polycrystalline SnSe
    Authors: Dou, W., Gong, Y., Huang, X., Ying, P., Tang, G.
    Journal: Small, Year: 2024

 

Shehzad Ahmed | Materials Science | Best Researcher Award

Dr. Shehzad Ahmed | Materials Science | Best Researcher Award

Shenzhen University | China

Author Profile

Scopus

Google Scholar

Early Academic Pursuits 🎓

Dr. Shehzad Ahmed's academic journey began with a Bachelor’s degree in Applied Physics from Kohat University of Science and Technology in Pakistan, where he researched thin film deposition techniques. This foundational interest propelled him toward a Master’s in Applied Physics at the International Islamic University in Islamabad, where he delved into the fascinating dynamics of magnetic nanoparticles. His early work here ignited his passion for materials science, especially in understanding complex material behaviors at the atomic level.

Professional Endeavors 🌍

Dr. Ahmed has held diverse roles, including Lecturer and Research Assistant at the International Islamic University, where he taught physics and developed expertise in nanotechnology research. He later served as an Assistant Professor at Sarhad University in Pakistan, delivering advanced courses in chemistry and supervising student research. His international experience includes a Visiting Fellowship at the Southern University of Science and Technology, Shenzhen, where he currently explores innovative materials for energy applications.

Contributions and Research Focus 🔬

Dr. Ahmed's primary research centers on the atomic structure and behavior of amorphous phase-change memory materials. He explores how structural disorder impacts the electrical, optical, and bonding properties of materials. His extensive work on Sb-Te phase-change memory materials aims to advance next-generation memory devices. Dr. Ahmed also investigates energy materials, batteries, catalysis, and nanotechnology, publishing numerous papers in top-tier scientific journals.

Accolades and Recognition 🏆

Dr. Ahmed's research achievements have been recognized through invitations to prestigious conferences, including the World Young Scientist Summit in Wenzhou and multiple Sino-German Bilateral Symposia on electronic and memory materials. His work has also earned him positions on international research collaborations, highlighting his impact within the global scientific community.

Impact and Influence 🌐

Dr. Ahmed's contributions to phase-change memory and amorphous materials science have paved the way for advancements in memory technology and sustainable energy solutions. His research is influential in guiding the design of high-performance materials, inspiring young scientists and students who look to his work as a foundation in materials science.

Legacy and Future Contributions 🌱

Dr. Ahmed envisions a career focused on pioneering discoveries in condensed matter physics and materials science, aiming to bridge academic research with industrial applications. His commitment to understanding and innovating materials for energy storage and catalysis positions him as a driving force for future advancements, ensuring a lasting legacy in the field of materials science.

 

Publications


  • 📄 "Polarization insensitive non-interleaved frequency multiplexed dual-band Terahertz coding metasurface for independent control of reflected waves"
    Authors: Iqbal, S., Noor, A., Ullah, N., Nisar, M.S., Wong, S.-W.
    Journal: Scientific Reports
    Year: 2024

  • 📄 "Enhanced As-COF nanochannels as a high-capacity anode for K and Ca-ion batteries"
    Authors: Ahmed, S., Ghani, A., Muhammad, I., Tian, X., Yakobson, B.
    Journal: Physical Chemistry Chemical Physics
    Year: 2024

  • 📄 "Revealing half-metallicity: Predicting large bandgaps in halogen-based full-Heusler alloys"
    Authors: Muhammad, I., Ahmed, S., Ullah, N., Tian, X., Zhang, J.-M.
    Journal: Results in Physics
    Year: 2024

  • 📄 "Unveiling the potential of aluminum-decorated 3D phosphorus graphdiyne as a catalyst for N₂O reduction"
    Authors: Ahmed, S., Khan, A.A., Khan, D., Xiaoqing, T., Muhammad, I.
    Journal: Physical Chemistry Chemical Physics
    Year: 2024

  • 📄"Giant Thermomechanical Bandgap Modulation in Quasi-2D Tellurium"
    Authors: Hussain, N., Ahmed, S., Tepe, H.U., Wu, H., Shcherbakov, M.R.
    Journal: Advanced Functional Materials
    Year: 2024

 

Priya Rani | Materials Science | Best Researcher Award

Dr. Priya Rani | Materials Science | Best Researcher Award

Central University of Haryana | India

Author Profile

Scopus

Google Scholar

Early Academic Pursuits

Dr. Priya Rani's academic journey commenced with a strong foundation in the sciences, demonstrated by her exemplary performance in matriculation (2011) where she secured a remarkable 93.4% in subjects including Science and Mathematics. She continued her academic excellence through her secondary education at HBSE, achieving 80% in 2013, focusing on Physics, Chemistry, Mathematics, English, and Hindi. Her undergraduate studies were completed at Govt. College for Women, Hisar, Kurukshetra University in 2016, where she excelled with a 77.1% and stood first in her college, majoring in Physics, Chemistry, and Mathematics.

Professional Endeavors

Dr. Rani embarked on her professional career by contributing to the field of Theoretical Condensed Matter Physics. She pursued her Ph.D. at Guru Jambheshwar University of Science & Technology, Hisar, which she was awarded in 2023. Her doctoral thesis, supervised by Prof. Sunita Srivastava and Dr. Ranjeet, focused on "Theoretical Study of Electronic and Optical Properties of Quantum Dots." Alongside her research, she has significant teaching experience, serving as a Guest Faculty at both the Department of Physics, Guru Jambheshwar University of Science & Technology, Hisar, and the Department of Physics & Astrophysics, Central University of Haryana.

Contributions and Research Focus

Dr. Rani has contributed extensively to the field of Theoretical Physics, particularly in Condensed Matter Physics and Quantum Dots. Her expertise lies in Density Functional Theory-based first principles software like SIESTA and Gaussian, and Effective Mass Approximation-based software such as Quantum Dot Lab. Her research interests include optoelectronic properties of quantum dots and their applications in bio-imaging and bio-sensing. She has published eight research papers, with five indexed in Scopus, and a book chapter, earning 57 citations, an h-index of 5, and an i10 index of 1.

Accolades and Recognition

Dr. Rani's academic and research excellence has been recognized through various awards and achievements. She was awarded the Junior Research Fellowship by UGC-CSIR in 2022 and served as a University Research Scholar at GJU S & T, Hisar in 2019. Notably, she received the Best Poster Award at the MMMCN-2023 Workshop at CUH, Mahendergarh. Additionally, she has served as a reviewer for prestigious journals like the New Journal of Physics, Physica Scripta, and Journal of Physics: Condensed Matter.

Impact and Influence

Dr. Rani's influence extends beyond her research contributions. She has actively participated in academic conferences and workshops, with a total of 23 attendances, including 11 oral presentations and six poster presentations. Her involvement in these events showcases her commitment to disseminating knowledge and engaging with the scientific community. As a guest faculty, she has imparted knowledge in advanced courses such as Advanced Quantum Mechanics, Optics, Semiconductor Physics, Mathematical Physics, Mechanics, and Electricity and Magnetism, influencing the next generation of physicists.

Legacy and Future Contributions

Dr. Priya Rani's legacy in Theoretical Condensed Matter Physics is marked by her rigorous research, academic excellence, and dedication to teaching. Her future contributions are anticipated to further the understanding of quantum dots and their applications, particularly in optoelectronics and bio-sensing. As she continues her career, her impact on the scientific community and her students will undoubtedly grow, fostering advancements in theoretical physics and its practical applications.

 

Notable Publications

Systematic tuning of optical and electronic properties of holey graphene quantum dots for UV applications 2024 (1)

Enhanced NIR fluorescence quantum yield of graphene quantum dots using dopants 2023 (4)

Effect of surface modification on optical and electronic properties of graphene quantum dots 2023 (26)

Tuning Properties of Graphene Quantum Dots by Passivation 2022 (7)

Study of electronic and optical properties of quantum dots 2022 (4)

Rubby Mahajan | Materials Science | Best Researcher Award

Dr. Rubby Mahajan | Materials Science | Best Researcher Award

Shri Mata Vaishno Devi University | India

Author Profile

Scopus

Google Scholar

Early Academic Pursuits

Dr. Rubby Mahajan embarked on her academic journey with a strong foundation in Physics, earning a Ph.D. in 2021 from Shri Mata Vaishno Devi University, Katra. Her doctoral research focused on the synthesis and spectral studies, particularly in spectroscopy, following a M.Sc. in Condensed Matter Physics and a B.Sc. with a diverse curriculum including English, Mathematics, Physics, and Computer Applications.

Professional Endeavors

Dr. Rubby Mahajan has accumulated extensive teaching experience alongside her research pursuits. She taught for over four years at the School of Physics in SMVDU Katra during her research period. Additionally, she served as an Assistant Professor at University Institute of Engineering and Technology (UIET), Janglote, University of Jammu, and Govt. Degree College Kishtwar, Jammu & Kashmir.

Contributions and Research Focus

Dr. Rubby Mahajan's research revolves around the structural and optical characterization of various phosphors doped with rare-earth ions. Her work has significantly contributed to understanding the luminescent properties and applications of materials like magnesium pyrophosphate, zinc aluminate, and others. Her expertise lies in synthesizing and evaluating these materials for potential technological applications.

Accolades and Recognition

Dr. Rubby Mahajan's contributions have been recognized through numerous publications in reputable journals such as the Journal of Alloys and Compounds, Journal of Materials Science, and Optik. Her papers have consistently contributed to the scientific community, earning recognition in terms of impact factor and citation counts.

Impact and Influence

Beyond her research, Dr. Rubby Mahajan's impact extends to her active participation in conferences and symposia where she presents her findings, influencing the academic discourse in materials science and photonics. Her role as an educator has also influenced the next generation of physicists and researchers.

Legacy and Future Contributions

Dr. Mahajan's legacy in the field of spectroscopy and materials science continues to grow through her ongoing research and academic contributions. Her future endeavors aim to delve deeper into the synthesis of novel phosphors and their applications in areas such as solid-state lighting and displays.

 

Notable Publications

Spectroscopic study of yellowish white light emitting MgP2O6: Dy3+ phosphor 2024

Influence of Sm3+ ion doping on the surface and photoluminescence properties of Ba3Zr2O7 phosphor 2023 (5)

A review report on structural and optical characterization of rare earth/transition metal doped pyrophosphate phosphors 2022 (3)

Effect of Eu3+ activator on spectral investigation of red emitting MgP2O6 phosphate 2022 (4)

X-ray photoemission and spectral investigations of Dy3+ activated magnesium pyrophosphate phosphors 2019 (39)

 

 

 

Dinesh Kumar Chaudhary | Physics and Astronomy | Best Researcher Award

Dr. Dinesh Kumar Chaudhary | Physics and Astronomy | Best Researcher Award

Tribhuvan University | Nepal

Author Profile

Scopus

Orcid

Early Academic Pursuits

Dr. Dinesh Chaudhary commenced his academic journey with a Bachelor's degree in Physics from Tribhuvan University, Kathmandu, Nepal. He proceeded to earn a Master's and eventually a Ph.D. in Physics from the same institution, demonstrating a steadfast commitment to academic excellence from the outset.

Professional Endeavors

Throughout his career, Dr. Chaudhary has been actively engaged in teaching and research at Amrit Campus, Tribhuvan University. He has been imparting knowledge in both undergraduate and postgraduate physics courses since 2004 and 2010, respectively, showcasing his dedication to nurturing future generations of physicists.

Contributions and Research Focus

Dr. Chaudhary's research endeavors span a wide array of topics in the field of physics, with a particular emphasis on materials science and nanotechnology. He has conducted several research projects investigating the electrical, optical, and sensing properties of various semiconductor materials, contributing significantly to the advancement of knowledge in these areas.

Accolades and Recognition

His contributions to the field have been recognized through memberships in esteemed organizations such as the Nepal Physical Society and the IEEE EDS Society. Additionally, his research publications in national and international journals have garnered attention and acclaim from the scientific community, further solidifying his reputation as a prominent figure in his field.

Impact and Influence

Dr. Chaudhary's research has not only expanded the frontiers of scientific knowledge but also holds practical implications in areas such as sensor technology, renewable energy, and nanoelectronics. His work on gas sensors, thin-film technology, and nanomaterials has the potential to address pressing societal challenges and drive innovation in various industries.

Legacy and Future Contributions

As Dr. Chaudhary continues his academic journey, his legacy of scholarly excellence and dedication to research will undoubtedly inspire future generations of physicists. His ongoing efforts to explore new avenues in materials science and nanotechnology promise to yield further insights and innovations, shaping the landscape of physics research for years to come.

Notable Publications

Wide-range ethanol sensor based on a spray-deposited nanostructured ZnO and Sn–doped ZnO films 2024

Structural, mechanical, electronic and optical properties of MgZnO3 perovskite: First-principles study 2023 (2)

Influence of nanoparticle size on the characterization of ZnO thin films for formaldehyde sensing at room temperature 2023 (11)

Mechanism of Imprinting Process in the Ni-P Metallic Glass Films: A Molecular Dynamics Study 2023 (3)

Unsteady Radiative Maxwell Fluid Flow over an Expanding Sheet with Sodium Alginate Water-Based Copper-Graphene Oxide Hybrid Nanomaterial: An Application to Solar Aircraft 2022 (10)

Prescribed Thermal Activity in the Radiative Bidirectional Flow of Magnetized Hybrid Nanofluid: Keller-Box Approach 2022 (13)