Minseong Ko | Energy | Best Researcher Award

Prof. Minseong Ko | Energy | Best Researcher Award

Pukyong National University | South Korea

Author Profile

Scopus

Orcid

🌟 Early Academic Pursuits

Prof. Minseong Ko's journey into the world of materials science and battery technology began with a strong academic foundation. He obtained his Bachelor of Science degree from Pukyong National University in the Department of Materials Science and Engineering. His passion for advanced materials led him to pursue a Master’s degree at Gwangju Institute of Science & Technology (GIST), where he focused on enhancing the sensitivity of GMR Spin Valve Sensors. He continued his academic excellence by earning a Ph.D. in Battery Science & Technology from the Ulsan National Institute of Science & Technology (UNIST). Under the guidance of esteemed mentors, including Prof. Jaephil Cho, he gained deep insights into lithium-ion batteries (LIBs) and energy storage technologies. His academic journey culminated in postdoctoral research at the Massachusetts Institute of Technology (MIT), where he worked under the mentorship of Prof. Ju Li, further strengthening his expertise in nuclear science and engineering.

💼 Professional Endeavors

Currently, Prof. Minseong Ko serves as an Associate Professor in the Department of Metallurgical Engineering at Pukyong National University, Busan, Republic of Korea. His professional trajectory has been marked by his contributions to battery technology and materials science. Throughout his career, he has engaged in cutting-edge research, focusing on the synthesis and functionalization of carbon materials, modification of nanomaterials, and the development of coating equipment for mass production. His role as an educator is equally significant, having taught and mentored students in advanced energy storage materials at prestigious institutions such as UNIST and Pukyong National University.

📈 Contributions and Research Focus

Prof. Ko’s research primarily revolves around all-solid-state batteries and lithium-ion battery (LIB) materials. His pioneering work in synthesizing cathode and anode materials aims to enhance energy storage efficiency, improve fast-charging capabilities, and ensure the non-flammability of LIBs. His expertise extends to in-situ analysis of electrode materials and HPPC (Hybrid Pulse Power Characterization) testing for electric vehicles. Additionally, he has been instrumental in the development of large-scale synthesizing equipment for commercialization, bridging the gap between academic research and industrial application.

His research interests include:

  • Development of high-energy and fast-charging lithium-ion batteries
  • Synthesis and surface modification of electrode materials
  • Fabrication of electrochemical full-cells (pouch and coin-type)
  • Commercialization and mass production of battery materials

🏆 Accolades and Recognition

Prof. Ko’s contributions to battery science have been widely recognized in the academic and industrial sectors. His groundbreaking research has been published in top-tier journals, including Nature Communications, Advanced Energy Materials, ACS Nano, and Nano Letters. These publications highlight his significant contributions to the advancement of high-performance lithium-ion batteries and nanomaterial applications. His work has not only earned him academic accolades but has also positioned him as a leader in the field of energy storage technology.

🔋 Impact and Influence

Through his extensive research and publications, Prof. Ko has made a lasting impact on the field of energy storage. His studies on silicon-based anodes and high-capacity cathode materials have paved the way for more efficient and durable lithium-ion batteries, crucial for applications in electric vehicles and renewable energy systems. His collaborative approach has also contributed to global advancements in materials engineering, fostering partnerships between academia and industry to drive innovation. Beyond research, Prof. Ko is deeply committed to mentoring the next generation of scientists and engineers. His teaching philosophy emphasizes hands-on experimentation and industry collaboration, equipping students with the skills needed to tackle real-world challenges in battery technology.

🌍 Legacy and Future Contributions

Looking ahead, Prof. Minseong Ko aims to further revolutionize battery technology by developing next-generation solid-state batteries with enhanced safety and performance. His research endeavors continue to focus on improving the longevity, efficiency, and sustainability of energy storage systems. As a respected scientist and mentor, he is set to leave a lasting legacy in the fields of materials science and electrochemical energy storage. With his unwavering dedication to innovation and excellence, Prof. Ko’s contributions will undoubtedly shape the future of sustainable energy solutions, benefiting industries and societies worldwide.

 

Publications


📄 "Morphology Control of Al Oxide Coating to Suppress Interfacial Degradation in Ultra-high Nickel Cathode Materials"

  • Authors: Minseong Kim, Jiyun Park, Taewan Kim, Byeonggu Kang, Jaegeon Im, Minseong Ko, Sujong Chae

  • Journal: Electrochimica Acta

  • Year: 2025


📄 "Binder-free CNT-implanted Carbon Cloth and Carbon Felt as Cathode Modifier for Bioelectricity Generation in Sediment Microbial Fuel Cells"

  • Authors: Nurfarhana Nabila Mohd Noor, Rashida Misali, Minseong Kim, Jeongmok Park, Minseong Ko, In-Cheol Lee, Tadashi Hibino, Kyunghoi Kim

  • Journal: Journal of the Taiwan Institute of Chemical Engineers

  • Year: 2025


 

Dr. Rupendra Kumar Sharma | Engineering  | Best Researcher Award

Assist Prof Dr. Rupendra Kumar Sharma | Engineering  | Best Researcher Award

Czech Technical University , Prague | Czech Republic

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Rupendra Kumar Sharma embarked on his academic journey with a Master’s degree in Physics from C. C. S. University, Meerut, India, completed in 2005. He subsequently pursued a Ph.D. in Electronics at the University of Delhi, India, under the mentorship of Prof. Mridula Gupta. His doctoral research, completed in March 2010, focused on the “Two-dimensional analytical modeling and simulation of gate misalignment effect in fully depleted double gate MOSFET.” This foundational work laid the groundwork for his future contributions to semiconductor device modeling and simulation.

Professional Endeavors

Dr. Sharma’s professional career is marked by a diverse range of roles in both academia and industry. He is currently an Assistant Professor in the Department of Electrotechnology at the Faculty of Electrical Engineering, Czech Technical University in Prague, where he has been since December 2021. His recent research involves the experimental preparation of materials using Pulse Laser Deposition (PLD) for advanced silicon solar cell technology. Before this, he served as a Postdoctoral Fellow at the same institution, working on developing new technology for selective contacts to silicon absorbers based on silicon oxide passivation and metal oxides. From 2018 to 2020, Dr. Sharma was the Executive Director at OYO Hotels Netherlands B.V., managing hospitality activities in Amsterdam and surrounding areas. Prior to that, he was the Managing Director at Indo Western s.r.o., focusing on education consultancy and professional training.

Contributions and Research Focus

Dr. Sharma’s research has consistently focused on advanced semiconductor devices and materials, with his postdoctoral work spanning several prestigious institutions. At the Czech Technical University in Prague (2013-2015), he researched silicon carbide-based power devices. As a Marie-Curie Postdoctoral Fellow at the Technical University of Crete (2011-2013), he worked on compact modeling of nanoscale multi-gate MOSFETs and high-voltage MOSFETs. His earlier postdoctoral stint at the University of Bologna (2010-2011) involved modeling and characterization of hot-carrier stress degradation and thermal effects in MOSFET devices.

Accolades and Recognition

Dr. Sharma has been the recipient of numerous prestigious fellowships and awards, reflecting his contributions to the field: the Marie-Curie Postdoctoral Fellowship from the European Union (2011-2013), an Individual Research Fellowship from the University of Bologna (2010-2011), and Senior and Junior Research Fellowships from the Council of Scientific & Industrial Research (CSIR) and Defence Research & Development Organization (DRDO) in India

Impact and Influence

Dr. Sharma has significantly impacted the field of semiconductor research, particularly in the modeling and simulation of advanced MOSFETs and power devices. His work has led to over 394 citations, an h-index of 13, and an i10-index of 14, demonstrating the influence and relevance of his research in the academic community. As a peer-reviewer for the Microelectronics Journal, he continues to shape the field by ensuring the quality and integrity of published research.

Legacy and Future Contributions

Dr. Sharma’s legacy in semiconductor research is highlighted by his extensive publication record and his book, “Modeling and Simulation of Gate Misalignment Effect in MOSFETs,” published by Scholars' Press. His contributions have advanced understanding in the field and provided new insights into the behavior of semiconductor devices under various conditions.

Notable Publications

Silicon heterojunction solar cells: Excellent candidate for low light illuminations 20214

Enhanced efficiency and stability of electron transport layer in perovskite tandem solar cells: Challenges and future perspectives 2023 (3)

Below the Urbach Edge: Solar Cell Loss Analysis Based on Full External Quantum Efficiency Spectra 2023 (1)

Effect of UV Irradiation on the Growth of ZnO:Er Nanorods and Their Intrinsic Defects 2023 (3)

New metric for carrier selective contacts for silicon heterojunction solar cells 2022 (2)