Yugesh Kumar | Energy | Best Researcher Award

Mr. Yugesh Kumar | Energy | Best Researcher Award

IIT Kanpur | India

Author Profile

Orcid

Early Academic Pursuits ๐ŸŽ“

Yugesh Kumar's academic journey began with a strong foundation in Mechanical Engineering at GCE Gaya, Bihar, where he earned his B. Tech degree from 2011 to 2015. His passion for understanding the fundamental aspects of engineering laid the groundwork for his future endeavors. With a CGPA of 7.88, he demonstrated a solid grasp of mechanical principles, which later transitioned into a focus on more specialized research areas.

Professional Endeavors ๐Ÿš€

Following his undergraduate studies, Yugesh Kumar pursued his M. Tech at NIT Durgapur, specializing in Physics. From 2017 to 2019, he deepened his knowledge in this field, achieving an impressive CGPA of 8.48. This academic progression marked a significant shift towards research, particularly in the area of materials science, where he started to explore the intricacies of perovskite solar cells.

Contributions and Research Focus ๐Ÿ”ฌ

Currently a research scholar at IIT Kanpur in the MSE department, Yugesh Kumar is making notable contributions to the field of renewable energy. His research is focused on improving the stability of triple cation perovskite solar cells, a critical area in the development of next-generation solar technologies. His work aims to enhance the efficiency and durability of these cells, which are key to advancing sustainable energy solutions.

Accolades and Recognition ๐Ÿ†

Yugesh Kumar's academic and research achievements have not gone unnoticed. His commitment to excellence is reflected in his academic record and the recognition he has received within his field. His work at IIT Kanpur positions him as a promising researcher in the domain of solar energy, contributing valuable insights that push the boundaries of current technology.

Impact and Influence ๐ŸŒ

The impact of Yugesh Kumar's research extends beyond the laboratory. By focusing on the stability of perovskite solar cells, he is contributing to the broader goal of making renewable energy more accessible and efficient. His research has the potential to influence the development of more reliable solar technologies, which are crucial for addressing global energy challenges.

Legacy and Future Contributions ๐ŸŒŸ

Yugesh Kumar's journey is just beginning, but his work already hints at a legacy of innovation and impact. As he continues his research, he is poised to make significant contributions to the field of renewable energy. His future endeavors will likely further our understanding of perovskite materials, paving the way for more sustainable energy solutions that could benefit generations to come.

 

Publications ๐Ÿ“š


๐Ÿ“"Waste-Derived Carbon Quantum Dots for Improving the Photostability of Perovskite Solar Cells to > 1000 hours"
Authors: Yugesh Kumar, Anand Singh, Raju Kumar Gupta, Kanwar Singh Nalwa, Ashish Garg
Journal: Materials Today Energy
Year: 2024


๐Ÿ“"Mechanical properties of graphene, defective graphene, multilayer graphene and SiC-graphene composites: A molecular dynamics study"
Authors: Kumar, Y., Sahoo, S., Chakraborty, A.K.
Journal: Physica B: Condensed Matter
Year: 2021


 

Dong Yang | Energy | Best Researcher Award

Prof. Dong Yang | Energy | Best Researcher Award

Dalian Institute of Chemical Physics , Chinese Academy of Sciences | China

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Prof. Dong Yang began his academic journey in Chemical Engineering and Technology, earning his B.S. from Inner Mongolia University in China (2004-2008). He furthered his education with a Ph.D. from the State Key Laboratory of Catalysis at Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China, where he focused on clean energy and catalysis (2008-2014).

Professional Endeavors

After completing his Ph.D., Prof. Dong Yang engaged in several significant research positions. He began as a postdoc at Shaanxi Normal University, working in the School of Materials and Science from July 2014 to June 2017. He then continued his postdoctoral research at Virginia Tech in the Department of Mechanical Engineering from July 2017 to July 2018. Following this, he served as an Assistant Research Professor at Pennsylvania State University, contributing to the Department of Materials Science and Engineering from August 2018 to July 2022. Since July 2022, Prof. Yang has been a professor at the Dalian Institute of Chemical Physics, a prestigious institute in China.

Contributions and Research Focus

Prof. Yang's research interests lie primarily in the field of chemical physics, with a particular emphasis on catalysis and clean energy. His work includes a significant number of publications, with over 130 papers and 12,389 citations, reflecting his substantial contributions to the scientific community. His research has addressed critical issues in catalysis, materials science, and energy solutions, aiming to develop sustainable and efficient technologies.

Accolades and Recognition

Prof. Yang's extensive research and numerous publications have earned him recognition in the scientific community. His high citation count and prolific output demonstrate his influence and the impact of his work in the field of chemical physics and materials science.

Impact and Influence

Prof. Yang's work has had a significant impact on the development of clean energy technologies and advanced materials. His research has contributed to the understanding and innovation of catalytic processes, which are crucial for sustainable energy solutions. His influence extends to both academic and industrial applications, driving advancements in energy efficiency and environmental sustainability.

Legacy and Future Contributions

As a professor at the Dalian Institute of Chemical Physics, Prof. Yang continues to advance his research and mentor the next generation of scientists. His legacy is built on his contributions to clean energy and catalysis, and he is poised to make further advancements in these critical areas. His future work is expected to continue addressing global energy challenges and contributing to sustainable technological solutions.

 

Notable Publications

Enhanced performance of carbon-based perovskite solar cells driven by N, Nโ€ฒ-bis-(3-(3,5-di-tert-butyl-4 hydroxyphenyl) propionyl) hexanediamine 2024

Perovskite photovoltaic interface: From optimization towards exemption 2024 (2)

Mechanical Durability and Flexibility in Perovskite Photovoltaics: Advancements and Applications 2024 (3)

Facilitating Electron Transport in Perovskite Solar Cells Through Tailored SnO2 Film Composition 2024

Flexible photovoltaic micro-power system enabled with a customized MPPT 2024