Jie Wang | Materials Science | Best Researcher Award

Prof. Jie Wang | Materials Science | Best Researcher Award

Qingdao Agricultural University | China

Prof. Jie Wang is an accomplished scholar in materials science, specializing in the design and construction of functional materials with applications in renewable energy, electrocatalysis, and advanced energy storage systems. He has authored over 100 publications in leading international journals, which have collectively garnered more than 6,580 citations, reflecting his significant research impact with an impressive h-index of 47. His research contributions span electrocatalysis for zinc-air and lithium-ion batteries, oxygen evolution and reduction reactions, water splitting, and the rational design of nanostructured materials such as transition metal sulfides, perovskites, and metal-organic frameworks. Prof. Wang has undertaken collaborative research at globally recognized institutions and serves as a corresponding or first author on numerous high-impact studies published in journals such as Advanced Materials, Advanced Functional Materials, Journal of Materials Chemistry A, and Energy Storage Materials. His work has been recognized through prestigious awards including multiple provincial and national-level prizes in natural science and outstanding research achievements. Alongside his publications, he has successfully led several major national and regional research grants focused on energy storage, electrocatalysis, and sustainable materials development. Through his extensive scholarly output, mentorship, and innovative research directions, Prof. Jie Wang continues to make influential contributions to advancing materials science and energy technologies.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

Author, A. A., Author, B. B., & Author, C. C. (2025). Porous carbon with predominant graphitic nitrogen and abundant defects mediated by reductive molten salt enables boosted sulfur conversion for room-temperature sodium-sulfur batteries. Chemical Engineering Journal.

Author, A. A., Author, B. B., & Author, C. C. (2025). Enhancing oxygen evolution electrocatalysis in heazlewoodite: Unveiling the critical role of entropy levels and surface reconstruction. Advanced Materials.

Author, A. A., Author, B. B., & Author, C. C. (2025). Optimizing aqueous zinc-sulfur battery performance via regulating acetonitrile co-solvents and carbon nanotube carriers. ChemSusChem.

Author, A. A., Author, B. B., & Author, C. C. (2025). Homogeneous bismuth dopants regulate cerium oxide structure to boost hydrogen peroxide electrosynthesis via two-electron oxygen reduction. Inorganic Chemistry Frontiers.

Author, A. A., Author, B. B., & Author, C. C. (2025). Promoting effect of copper doping on LaMO₃ (M = Mn, Fe, Co, Ni) perovskite-supported gold catalysts for selective gas-phase ethanol oxidation. Catalysts.

Author, A. A., Author, B. B., & Author, C. C. (2025). Structural regulation of NiFe LDH under spontaneous corrosion to enhance the oxygen evolution properties. ChemSusChem.

Author, A. A., Author, B. B., & Author, C. C. (2025). Exploring the efficiency of N, N-dimethylformamide for aqueous zinc-sulfur batteries. Science China Chemistry.

Author, A. A., Author, B. B., & Author, C. C. (2024). Expediting corrosion engineering for sulfur-doped, self-supporting Ni-Fe layered dihydroxide in efficient aqueous oxygen evolution. Catalysts.

Author, A. A., Author, B. B., & Author, C. C. (2024). Rational design of electrolyte additives for improved solid electrolyte interphase formation on graphite anodes: A study of 1,3,6-hexanetrinitrile. Energies.

Author, A. A., Author, B. B., & Author, C. C. (2024). Phase modulation of nickel-tin alloys in regulating electrocatalytic nitrogen reduction properties. Rare Metals.

Hyunchul Ju | Engineering | Best Researcher Award

Prof. Dr. Hyunchul Ju | Engineering | Best Researcher Award

Inha University | South Korea

Author Profile

Scopus

Orcid

Google Scholar

🌱 Early Academic Pursuits

Prof. Dr. Hyunchul Ju embarked on his academic journey in Mechanical Engineering at Inha University in South Korea, earning his B.S. in 1999 . His quest for advanced knowledge took him to the United States, where he completed his M.S. at the University of Nevada, Reno in 2001, and later achieved his Ph.D. at The Pennsylvania State University in 2006. His early research laid the foundation for a lifelong dedication to innovation in fuel cells and hydrogen energy systems .

🧑‍🏫 Professional Endeavors

Prof. Ju’s academic career spans multiple prestigious institutions. After a post-doctoral stint at Penn State, he held faculty positions at Chungju National University and later joined Inha University, where he rose to the rank of Professor in 2018. His roles have included Associate Dean of Engineering and Director of key research centers focused on carbon neutrality and hydrogen-based mechanical systems. His international experience includes time as a visiting scholar at LBNL (USA), adding global dimension to his scientific leadership.

🧪 Contributions and Research Focus

Prof. Ju is a world-renowned authority on fuel cells, electrolysis, hydrogen storage, and battery systems. He has pioneered the modeling and optimization of electrochemical systems and developed cutting-edge technologies for lightweight fuel cell components, MEAs, and carbon composites. His work integrates machine learning, CFD, and FEM techniques to enhance performance and durability. He has secured major research funding from institutions like Hyundai and the National Research Foundation of Korea, proving his leadership in sustainable energy technologies.

🏆 Accolades and Recognition

Prof. Ju has received over 20 prestigious awards, including multiple Best Paper and Best Presentation Awards from respected Korean and international societies. He has been honored for his outstanding research contributions by Inha University, and received the Most Cited Paper Award from International Journal of Heat and Mass Transfer. His dedication and excellence have earned him recognition as a thought leader in energy research.

🌍 Impact and Influence

Beyond academia, Prof. Ju serves in key editorial and leadership roles: Editor-in-Chief of KHNES, Associate Editor at ASME JEECS, and Vice President of KSFM and KSME. He has mentored over 50 graduate students, many of whom now work at top-tier organizations such as Samsung, LG, Hyundai, and SK Innovation. His influence is seen in both academic research and industrial innovation, especially in Korea’s clean energy sector.

🔮 Legacy and Future Contributions

Prof. Hyunchul Ju’s legacy is marked by his pioneering role in hydrogen energy and electrochemical systems development. He led the world’s first DMFC-powered UAV demonstration, introduced novel cold-start technologies now used globally, and continues to develop high-efficiency systems for next-generation fuel cells. With multiple patents and a focus on carbon-neutral technologies, he is set to shape the future of sustainable mechanical systems for years to come.

Publications


📄Innovative flow field design strategies for performance optimization in polymer electrolyte membrane fuel cells

  • Authors: Not specified

  • Journal: Applied Energy

  • Year: 2025


📄Reliability-based design optimization methodology for enhancing performance and efficiency in catalyst manufacturing for polymer electrolyte membrane fuel cells

  • Authors: Not specified

  • Journal: Energy Conversion and Management

  • Year: 2024


📄Cathode-supported SOFCs enabling redox cycling and coking recovery in hydrocarbon fuel utilization

  • Authors: Not specified

  • Journal: Chemical Engineering Journal

  • Year: 2024


📄Ultrahigh Electrode Performance of Low-Loaded Iridium Jagged Nanotubes for Water Electrolysis Applications

  • Authors: Not specified

  • Journal: Advanced Energy Materials

  • Year: 2024


 

Dong Yang | Energy | Best Researcher Award

Prof. Dong Yang | Energy | Best Researcher Award

Dalian Institute of Chemical Physics , Chinese Academy of Sciences | China

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Prof. Dong Yang began his academic journey in Chemical Engineering and Technology, earning his B.S. from Inner Mongolia University in China (2004-2008). He furthered his education with a Ph.D. from the State Key Laboratory of Catalysis at Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China, where he focused on clean energy and catalysis (2008-2014).

Professional Endeavors

After completing his Ph.D., Prof. Dong Yang engaged in several significant research positions. He began as a postdoc at Shaanxi Normal University, working in the School of Materials and Science from July 2014 to June 2017. He then continued his postdoctoral research at Virginia Tech in the Department of Mechanical Engineering from July 2017 to July 2018. Following this, he served as an Assistant Research Professor at Pennsylvania State University, contributing to the Department of Materials Science and Engineering from August 2018 to July 2022. Since July 2022, Prof. Yang has been a professor at the Dalian Institute of Chemical Physics, a prestigious institute in China.

Contributions and Research Focus

Prof. Yang's research interests lie primarily in the field of chemical physics, with a particular emphasis on catalysis and clean energy. His work includes a significant number of publications, with over 130 papers and 12,389 citations, reflecting his substantial contributions to the scientific community. His research has addressed critical issues in catalysis, materials science, and energy solutions, aiming to develop sustainable and efficient technologies.

Accolades and Recognition

Prof. Yang's extensive research and numerous publications have earned him recognition in the scientific community. His high citation count and prolific output demonstrate his influence and the impact of his work in the field of chemical physics and materials science.

Impact and Influence

Prof. Yang's work has had a significant impact on the development of clean energy technologies and advanced materials. His research has contributed to the understanding and innovation of catalytic processes, which are crucial for sustainable energy solutions. His influence extends to both academic and industrial applications, driving advancements in energy efficiency and environmental sustainability.

Legacy and Future Contributions

As a professor at the Dalian Institute of Chemical Physics, Prof. Yang continues to advance his research and mentor the next generation of scientists. His legacy is built on his contributions to clean energy and catalysis, and he is poised to make further advancements in these critical areas. His future work is expected to continue addressing global energy challenges and contributing to sustainable technological solutions.

 

Notable Publications

Enhanced performance of carbon-based perovskite solar cells driven by N, N′-bis-(3-(3,5-di-tert-butyl-4 hydroxyphenyl) propionyl) hexanediamine 2024

Perovskite photovoltaic interface: From optimization towards exemption 2024 (2)

Mechanical Durability and Flexibility in Perovskite Photovoltaics: Advancements and Applications 2024 (3)

Facilitating Electron Transport in Perovskite Solar Cells Through Tailored SnO2 Film Composition 2024

Flexible photovoltaic micro-power system enabled with a customized MPPT 2024