Lixing Zheng | Energy | Best Researcher Award

Dr. Lixing Zheng | Energy | Best Researcher Award

PowerChina Chongqing Engineering Co., Ltd | China

Author Profile

Scopus

Early Academic Pursuits 🎓

Dr. Lixing Zheng’s academic journey began at the South China University of Technology, where he earned both his bachelor’s (2016) and master’s degrees (2019) in Mechanical and Electrical Engineering. His passion for energy research led him to pursue a PhD at the Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (2019–2023), where he focused on hydrogen energy production and low-carbon scenario analysis. His doctoral research laid the foundation for groundbreaking studies in hydrogen energy efficiency, carbon emissions, and energy transformation strategies.

Professional Endeavors 🏢

After completing his PhD, Dr. Zheng transitioned into postdoctoral research at PowerChina Chongqing Engineering Co., Ltd. in December 2023. His work continues to address critical energy challenges, focusing on hydrogen energy production, life cycle assessment (LCA) models, and low-carbon development pathways. He has also collaborated with prominent institutions and industry leaders, including the Chinese Academy of Engineering, Shanghai Electric Group, and Honda R&D China Co., Ltd., contributing to key projects in sustainable energy and industrial innovation.

Contributions and Research Focus 🔬

Dr. Zheng’s research spans multiple areas in sustainable energy, with a strong emphasis on hydrogen production technologies, carbon emissions reduction, and economic feasibility studies. His notable contributions include:

  • Hydrogen Energy Research: Development of LCA models to assess hydrogen production efficiency and carbon footprints.
  • Low-Carbon Transition Strategies: Medium and long-term scenario analysis for energy transformation in the Guangdong-Hong Kong-Macao Greater Bay Area.
  • Industrial Innovation: Evaluation of hydrogen metallurgy as an alternative for reducing emissions in the steel industry.
  • Waste Management and Renewable Energy: Modeling of wind power waste generation and end-of-life strategies in China.

His extensive work is reflected in multiple high-impact journal publications, including:

  • Journal of Engineering Thermophysics (Award-winning paper on hydrogen production routes)
  • International Journal of Hydrogen Energy
  • Progress in New Energy
  • Resources, Conservation and Recycling
  • Sustainability

Accolades and Recognition 🏆

Dr. Zheng’s contributions to hydrogen energy and sustainability research have earned him prestigious accolades:

  • 2024 Outstanding Paper Award from the Journal of Engineering Thermophysics.
  • 2024 Global Top Ten Award for the Commercialisation of Research Results by Engineers, highlighting his ability to bridge the gap between academic research and real-world applications.

Impact and Influence 🌍

Dr. Zheng’s work plays a crucial role in shaping China’s energy transition policies and advancing green technologies. His research on hydrogen energy supply scenarios and carbon neutrality goals has influenced decision-making in both government and industry sectors, paving the way for sustainable energy solutions.

Legacy and Future Contributions 🔮

With a growing portfolio of influential research and industry collaborations, Dr. Zheng is set to become a leading figure in hydrogen energy innovation. His future contributions will likely focus on enhancing hydrogen production efficiency and expanding its commercial applications, developing comprehensive LCA frameworks to support low-carbon policies, and strengthening partnerships with global energy stakeholders to accelerate clean energy adoption.

Publications


  • 📄 A Study of the Life Cycle Exergic Efficiency of Hydrogen Production Routes in China
    Authors: Lixing Zheng, Xian Jiang, Xue Zhang, Shuang Wang, Rui Wang, Lijun Hu, Kai Xie, Peng Wang
    Journal: Sustainability
    Year: 2025


  • 📄 Assessing Energy Consumption, Carbon Emissions, and Costs in Biomass-to-Gas Processes: A Life-Cycle Assessment Approach
    Authors: Ming Liu, Jian Zeng, Guohua Huang, Xiaohong Liu, Guoqiang He, Shun Yao, Ning Shang, Lixing Zheng, Peng Wang
    Journal: Sustainability
    Year: 2024


  • 📄 Medium and Long-Term Hydrogen Production Technology Routes and Hydrogen Energy Supply Scenarios in Guangdong Province
    Authors: Lixing Zheng, Daiqing Zhao, Wenjun Wang
    Journal: International Journal of Hydrogen Energy
    Year: 2023


  • 📄 Analysis of the Alternative Potential and Economic Benefits of Hydrogen Metallurgy Technology in the Iron and Steel Industry—A Case Study of Guangdong Province
    Authors: Lixing Zheng, Genglin Dong, Peng Wang, Daiqing Zhao
    Journal: Progress in New Energy
    Year: 2023


  • 📄 Research on Energy Efficiency, Carbon Emissions, and Economics of Hydrogen Production Routes in China Based on Life Cycle Assessment
    Authors: Lixing Zheng, Daiqing Zhao, Xiaoling Qi, et al.
    Journal: Journal of Engineering Thermophysics
    Year: 2022


 

Lei Wang | Energy | Innovation in Publishing Award

Dr. Lei Wang | Energy | Innovation in Publishing Award

Tsinghua University | China

Author Profile

Orcid

Early Academic Pursuits

Lei Wang embarked on his academic journey, earning a Bachelor's degree in Electrical Engineering from Yangtze University in 2015. He furthered his studies, completing a Master's degree at Hubei University of Technology in 2019 and earning his Ph.D. from Wuhan University in Electrical Engineering in 2023.

Professional Endeavors

Lei Wang delved into the realm of academia, contributing significantly to various research projects. His roles included postdoctoral research at Tsinghua University, focusing on machine learning applications in battery prognostics and health management. He demonstrated his expertise in anomaly detection, safety assessment, and predictive modeling for battery systems.

Contributions and Research Focus

Lei Wang made substantial contributions to the "Power IoTs" project, focusing on deep reinforcement learning for adaptive uncertainty economic dispatch in power systems. His innovative models addressed the complexities of economic dispatch, showcasing adaptability to uncertain conditions, particularly in renewable energy integration scenarios.

Accolades and Recognition

Lei Wang received recognition for his pivotal role in developing a deep reinforcement learning-based approach, enhancing economic dispatch in power systems. His work contributed to grid reliability and efficiency, demonstrating practical applicability in real-world scenarios, particularly in Tianjin's Binhai New Area.

Impact and Influence

Lei Wang's research has left a lasting impact on the field, advancing the understanding of power system optimization. His work not only contributes to academic knowledge but also has practical implications for improving the efficiency and reliability of power delivery and consumption.

Legacy and Future Contributions

Lei Wang's legacy includes pioneering work in machine learning applications for battery systems and economic dispatch in power systems. Looking ahead, his expertise in artificial intelligence, spatiotemporal correlation modeling, and power equipment diagnosis positions him as a key contributor to the evolving landscape of energy research. As an emerging leader in the field, Lei Wang is poised to continue making groundbreaking contributions to the energy sector.

Notable Publications

An Unsupervised Approach to Wind Turbine Blade Icing Detection Based on Beta Variational Graph Attention Autoencoder 2023

Wind turbine blade icing risk assessment considering power output predictions based on SCSO-IFCM clustering algorithm 2024

A novel approach to ultra-short-term multi-step wind power predictions based on encoder–decoder architecture in natural language processing 2022 (18)

M2STAN: Multi-modal multi-task spatiotemporal attention network for multi-location ultra-short-term wind power multi-step predictions 2022 (22)

M2TNet: Multi-modal multi-task Transformer network for ultra-short-term wind power multi-step forecasting 2022 (19)