Chanh Vuong-Dinh | Engineering | Best Researcher Award

Dr. Chanh Vuong-Dinh | Engineering | Best Researcher Award

Duy Tan university | Vietnam

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Chanh Vuong-Dinh’s academic journey began with a strong foundation in engineering mechanics at Vietnam National University, where he developed a keen interest in the fundamentals of structural behavior and material mechanics. His early studies shaped his analytical approach and laid the groundwork for advanced exploration in computational engineering. With encouragement from academic mentors and recognition for his academic excellence, he pursued higher studies abroad to refine his expertise in civil and environmental engineering.

Professional Endeavors

Dr. Vuong-Dinh has combined industry practice and academic scholarship to enrich his professional career. Before entering academia, he worked as a pipeline design engineer at Petro Vietnam Engineering and as a pressure vessel design engineer at Hitachi Zosen Vietnam, where he gained practical experience in structural integrity and mechanical design. Transitioning into academia, he joined the Duy Tan Research Institute for Computational Engineering as a lecturer and researcher, where he continues to contribute to both teaching and research with a focus on computational mechanics.

Contributions and Research Focus

At the core of his research lies the advancement of computational modeling for complex engineering problems. His work specializes in finite element analysis, fracture mechanics, damage mechanics, and biomechanics, with particular emphasis on quasi-brittle materials, composites, and soft tissues. He has made significant contributions to the development of smoothing gradient damage models, enabling more accurate predictions of fracture behavior and failure mechanisms. His research extends to numerical methods for engineering, addressing both theoretical modeling and applied problem-solving.

Accolades and Recognition

Throughout his academic career, Dr. Vuong-Dinh has received several prestigious honors that reflect his scholarly dedication. His studies in Japan were supported by the Japanese Government MEXT Scholarship, a testament to his academic potential and research capability. Earlier in his academic path, he was awarded the Encouragement Scholarship at Vietnam National University for consistent academic excellence. These recognitions highlight his commitment to advancing civil engineering research at both national and international levels.

Impact and Influence

The influence of Dr. Vuong-Dinh’s research can be seen in the engineering community through his numerous publications in leading international journals such as Engineering Fracture Mechanics, Theoretical and Applied Fracture Mechanics, Composite Structures, and Computers & Structures. His contributions have advanced the understanding of fracture phenomena in brittle and composite materials, influencing both theoretical frameworks and engineering applications. Furthermore, his participation in global conferences and workshops has allowed him to share his expertise widely and engage in collaborative discussions with peers worldwide.

Legacy and Future Contributions

Dr. Vuong-Dinh’s scholarly output demonstrates a balance between theoretical innovation and practical application. By developing advanced computational models for structural analysis and damage prediction, his research provides essential tools for engineers addressing challenges in infrastructure, biomechanics, and material sciences. Moving forward, his focus on interdisciplinary applications, including biomechanics and soft tissue modeling, promises to expand the scope of his impact. His role as an academic mentor ensures the cultivation of future researchers who will further these developments.

Publications


Enhanced local damage model with polygonal elements for transient thermoelastic fracture analysis
Authors: Du Dinh Nguyen, Nguyen Hoang Le, Chanh Dinh Vuong, Minh Ngoc Nguyen, Tinh Quoc Bui
Journal: Mechanics of Materials
Publisher: Elsevier
Year: 2025


Multi-scale concurrent topology optimization of lattice structures with single type of composite micro-structure subjected to design-dependent self-weight loads
Authors: Minh Ngoc Nguyen, Duy Vo, Chanh Dinh Vuong, Tinh Quoc Bui
Journal: Computers & Structures
Publisher: Elsevier
Year: 2025


Transgranular and intergranular fracture in polycrystalline materials with the anisotropic smoothing gradient damage model
Authors: Chanh Dinh Vuong, Tinh Quoc Bui
Journal: Meccanica
Publisher: Springer
Year: 2025


Simulation of failure in fiber-reinforced composites and polycrystalline materials: A novel anisotropic local damage approach
Authors: Quan Nhu Tran, Minh Ngoc Nguyen, Chanh Dinh Vuong, Tinh Quoc Bui
Journal: Composite Structures
Publisher: Elsevier
Year: 2025


An enhanced local damage model for 2D and 3D quasi-brittle fracture: ABAQUS-FEM implementation and comparative study on the effect of equivalent strains
Authors: Quan Nhu Tran, Minh Ngoc Nguyen, Chanh Dinh Vuong, Nhung Nguyen, Tinh Quoc Bui
Journal: Advances in Engineering Software
Publisher: Elsevier
Year: 2025


Conclusion

Dr. Chanh Vuong-Dinh has built a distinguished career marked by academic rigor, professional versatility, and impactful research in computational mechanics. His journey from early studies in Vietnam to advanced research in Japan and current academic contributions at Duy Tan University reflects a dedication to bridging theory and practice in engineering. With his continued pursuit of innovative methods for understanding and solving complex structural problems, he stands as a promising leader in the field, contributing to both the advancement of scientific knowledge and the training of future generations of engineers.

Sanboh Lee | Materials Science | Best Researcher Award

Prof. Sanboh Lee | Materials Science | Best Researcher Award

National Tsing Hua University | Taiwan

Author Profile

Scopus

Orcid

🌱 Early Academic Pursuits

Prof. Sanboh Lee's journey into materials science began with a BS in Physics from Fu Jen Catholic University (1970), followed by an MS in Physics from National Tsing Hua University (1972). His academic curiosity led him to pursue a PhD in Materials Science at the University of Rochester (1980), where he built a strong foundation in material properties and mechanics.

💼 Professional Endeavors

With a career spanning decades, Prof. Lee has been a Professor at National Tsing Hua University (1985-2018) and served as an Adjunct Professor at the University of Science and Technology Beijing since 2005. His global research contributions include visiting scholar roles at Lehigh University and guest scientist positions at the National Institute of Standards and Technology (NIST). His consultancy work with institutions like the University of Rochester, Oak Ridge National Laboratory, and the University of Tennessee reflects his expertise in materials engineering.

🔬 Contributions and Research Focus

Prof. Lee’s research spans dislocation mechanics, optical and mechanical properties of polymers, hydrogen transport in low-carbon steels, and semiconductor devices. His groundbreaking studies include:

  • Dislocation and crack interactions in materials.
  • Gamma-ray effects on optical and mechanical properties.
  • Nano-imprint technology and micro-machining innovations.
  • Diffusion-induced and thermal stresses in materials.
  • Polymers and composite materials with enhanced mechanical and optical properties.
    With over 280 journal publications and 150 conference presentations, Prof. Lee has significantly shaped modern material science.

🏆 Accolades and Recognition

Prof. Lee has received numerous international awards, including:

  • Lifetime Achievement Award (2022) by VDGOOD® Professional Association.
  • SAS Eminent Fellow Membership (2021).
  • Fellow, Materials Research Society-Taiwan (2009).
  • Tsing Hua Chair Professor (2006-).
  • Fellow, ASM International, USA (2004) for contributions to fracture mechanics and transport processes in metals and polymers.
  • Outstanding Special Research Fellow (2002) by the National Science Council of Taiwan.
  • Who’s Who in Science and Engineering and other global recognitions in research excellence.

🌍 Impact and Influence

As an influential figure in materials science, Prof. Lee has contributed to academic committees, international symposia, and editorial boards. He has been an advisor, editor, and organizer for numerous scientific events and research journals. His leadership roles in organizations such as TMS, Materials Chemistry and Physics, and the Asia Pacific Academy of Materials underscore his global impact in material research and engineering.

🔮 Legacy and Future Contributions

Prof. Lee’s pioneering work in materials science, fracture mechanics, and nanotechnology continues to inspire new generations of researchers. His advancements in nano-imprint technology, hydrogen transport, and semiconductor materials are paving the way for next-generation engineering applications. As a Professor Emeritus, his legacy endures through ongoing collaborations, mentorship, and research innovations that will influence future breakthroughs in materials engineering and nanotechnology.

Publicaations


📄 Kinetic Analysis of the Cracking Behavior in Methanol-Treated Poly(methyl methacrylate)/Functionalized Graphene Composites

  • Journal: Journal of Composites Science
  • Year: 2025
  • Authors: Bing-Hong Yang, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee

📄 Cracking in UV-Irradiated Poly(methyl methacrylate)/Functionalized Graphene Composites: Solvent Effect

  • Journal: Journal of Polymer Research
  • Year: 2024
  • Authors: Bing-Hong Yang, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee

📄 Analysis of the Thermal Aging Kinetics of Tallow, Chicken Oil, Lard, and Sheep Oil

  • Journal: Molecules
  • Year: 2024
  • Authors: Yun-Chuan Hsieh, Hao Ouyang, Yulin Zhang, Donyau Chiang, Fuqian Yang, Hsin-Lung Chen, Sanboh Lee

📄 Creep-Recovery Deformation of 304 Stainless-Steel Springs Under Low Forces

  • Journal: Mechanics of Materials
  • Year: 2024
  • Authors: Ming-Yen Tsai, Shou-Yi Chang, Yulin Zhang, Fuqian Yang, Sanboh Lee

📄 A Mechanical Model for Stress Relaxation of Polylactic Acid/Thermoplastic Polyurethane Blends

  • Journal: Journal of Composites Science
  • Year: 2024
  • Authors: Yi-Sheng Jhao, Hao Ouyang, Chien-Chao Huang, Fuqian Yang, Sanboh Lee

 

Camelia Cerbu | Materials Science | Best Researcher Award

Prof Dr. Camelia Cerbu | Materials Science | Best Researcher Award

Transilvania University of Brasov | Romania

Author Profile

Scopus

Orcid

Google Scholar 

🎓 Early Academic Pursuits

Dr. Camelia Cerbu's academic journey is deeply rooted in mechanical engineering. She began her education at the prestigious "Radu Negru" National College in Făgăraş, specializing in mathematics and physics. From there, she advanced to Transilvania University of Brașov, where she completed her Bachelor's and Master's degrees in Mechanical Engineering. Her focus on machine building technology and computer-aided design and technology marked the foundation of her career. Dr. Cerbu earned her Ph.D. in Engineering Sciences from the same university, where her thesis focused on optimizing parts made of composite materials under aggressive environmental conditions.

👩‍🏫 Professional Endeavors

Dr. Cerbu’s professional career spans both academia and industry. Early in her career, she worked as an engineer at IUS S.A. Brașov and the Automotive Institute of Brașov, where she specialized in research and computer-aided design. Since 2000, her focus has shifted toward academia at Transilvania University of Brașov. Over the years, she has risen through the ranks from Assistant Professor to full Professor. Currently, she supervises Ph.D. students in the field of Mechanical Engineering. Her teaching includes courses on strength of materials, mechanics of composite materials, and the dynamics of mechanical structures.

🔬 Contributions and Research Focus

Dr. Cerbu's research expertise lies in the strength of materials, elasticity, and the mechanics of composite materials. She has conducted extensive research on the effects of environmental factors like moisture and temperature on composite materials. Her work includes both experimental and analytical studies using advanced techniques such as finite element analysis and digital image correlation. Dr. Cerbu has coordinated numerous research projects, including studies on hybrid composite structures and their behavior in corrosive environments. Her contributions extend to research in polymeric materials used in challenging environmental conditions.

🏆 Accolades and Recognition

Dr. Cerbu’s academic and research excellence has earned her recognition both nationally and internationally. She has published over 39 papers indexed in Web of Science and authored 14 books. She holds a patent for a hybrid laminated composite material for outdoor applications. Additionally, Dr. Cerbu has presented her research at international institutions, including Tianjin University in China, where she was invited as a professor through the Erasmus+ program. With an H-index of 11 on Web of Science and 12 on Scopus, her impact on the academic community is evident.

🌍 Impact and Influence

As a CNATDCU member for the 2024-2028 term and a regular reviewer for prestigious scientific journals, Dr. Cerbu’s influence extends beyond her direct research. Her leadership roles at Transilvania University, including serving on various councils and heading research centers, underscore her commitment to advancing the field of mechanical engineering. She has also been instrumental in international academic partnerships, such as coordinating collaborations with Tianjin University of Commerce in China.

📜 Legacy and Future Contributions

Dr. Camelia Cerbu’s work in composite materials has set a benchmark for future research in the field, particularly in understanding how environmental factors affect mechanical structures. Her guidance of Ph.D. students ensures that her knowledge and expertise will be passed down to the next generation of engineers. As she continues to lead research at Transilvania University, her contributions will undoubtedly shape advancements in material science and mechanical engineering.

 

Publications


  • 📄 Effects of Rubber Core on the Mechanical Behaviour of the Carbon–Aramid Composite Materials Subjected to Low-Velocity Impact Loading Considering Water Absorption
  • Authors: Ursache, S., Cerbu, C., Hadăr, A., Petrescu, H.A.
  • Journal: Materials
  • Year: 2024

  • 📄 Characteristics of Carbon and Kevlar Fibres, Their Composites and Structural Applications in Civil Engineering—A Review
  • Authors: Ursache, Ș., Cerbu, C., Hadăr, A.
  • Journal: Polymers
  • Year: 2024

  • 📄  Investigation on Phoenix dactylifera/Calotropis procera Fibre-Reinforced Epoxy Hybrid Composites
  • Authors: Mazaherifar, M.H., Hosseinabadi, H.Z., Coșereanu, C., Timar, M.C., Georgescu, S.V.
  • Journal: Forests
  • Year: 2022

  • 📄  Evaluation of Wave Velocity in Orthotropic Media Based on Intrinsic Transfer Matrix
  • Authors: Crețu, N., Roșca, I.C., Stanciu, M.D., Gliga, V.G., Cerbu, C.
  • Journal: Experimental Mechanics
  • Year: 2022

  • 📄  Design Solutions for Slender Bars with Variable Cross-Sections to Increase the Critical Buckling Force
  • Authors: Botis, M.F., Cerbu, C.
  • Journal: Materials
  • Year: 2022