Seeram Ramakrishna | Materials Science | Excellence in Innovation Award

Prof. Seeram Ramakrishna | Materials Science | Excellence in Innovation Award

Tsinghua University | Singapore

Prof. Seeram Ramakrishna is a highly influential researcher in materials science and advanced engineering, with a distinguished scholarly record reflected by an h-index of 192, 2,251 documents, and approximately 174,820 citations across 123,939 citing publications. His research spans nanomaterials, sustainable materials engineering, energy storage systems, and environmental technologies, with a strong emphasis on translating fundamental science into scalable solutions. Recent publications highlight cutting-edge contributions to aluminum–air batteries through biomass-derived carbon quantum dots, defect-engineered electrocatalysts for lithium–sulfur batteries, photocatalytic hydrogen evolution using hierarchical sulfide systems, and bio-inspired materials for water purification, oil–water separation, and dust filtration. His work consistently integrates interfacial engineering, defect chemistry, and green material design to enhance electrochemical performance and environmental sustainability. Through an exceptional volume of high-impact publications and sustained citation influence, his research has significantly shaped contemporary directions in energy materials, functional textiles, and circular, eco-friendly material systems.

Citation Metrics (Scopus)

180k

135k

90k

45k

0

Citations
174,820

Documents
2,251

h-index
192

Citations

Documents

h-index


View Scopus Profile

Featured Publications

Electrospinning of nanofibres
– Nature Reviews Methods Primers, 2024, 4, 1
Intelligent Materials
– Matter, 2020, Volume 3, Issue 3, Pages 590–593

Jie Wang | Materials Science | Best Researcher Award

Prof. Jie Wang | Materials Science | Best Researcher Award

Qingdao Agricultural University | China

Prof. Jie Wang is an accomplished scholar in materials science, specializing in the design and construction of functional materials with applications in renewable energy, electrocatalysis, and advanced energy storage systems. He has authored over 100 publications in leading international journals, which have collectively garnered more than 6,580 citations, reflecting his significant research impact with an impressive h-index of 47. His research contributions span electrocatalysis for zinc-air and lithium-ion batteries, oxygen evolution and reduction reactions, water splitting, and the rational design of nanostructured materials such as transition metal sulfides, perovskites, and metal-organic frameworks. Prof. Wang has undertaken collaborative research at globally recognized institutions and serves as a corresponding or first author on numerous high-impact studies published in journals such as Advanced Materials, Advanced Functional Materials, Journal of Materials Chemistry A, and Energy Storage Materials. His work has been recognized through prestigious awards including multiple provincial and national-level prizes in natural science and outstanding research achievements. Alongside his publications, he has successfully led several major national and regional research grants focused on energy storage, electrocatalysis, and sustainable materials development. Through his extensive scholarly output, mentorship, and innovative research directions, Prof. Jie Wang continues to make influential contributions to advancing materials science and energy technologies.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

Author, A. A., Author, B. B., & Author, C. C. (2025). Porous carbon with predominant graphitic nitrogen and abundant defects mediated by reductive molten salt enables boosted sulfur conversion for room-temperature sodium-sulfur batteries. Chemical Engineering Journal.

Author, A. A., Author, B. B., & Author, C. C. (2025). Enhancing oxygen evolution electrocatalysis in heazlewoodite: Unveiling the critical role of entropy levels and surface reconstruction. Advanced Materials.

Author, A. A., Author, B. B., & Author, C. C. (2025). Optimizing aqueous zinc-sulfur battery performance via regulating acetonitrile co-solvents and carbon nanotube carriers. ChemSusChem.

Author, A. A., Author, B. B., & Author, C. C. (2025). Homogeneous bismuth dopants regulate cerium oxide structure to boost hydrogen peroxide electrosynthesis via two-electron oxygen reduction. Inorganic Chemistry Frontiers.

Author, A. A., Author, B. B., & Author, C. C. (2025). Promoting effect of copper doping on LaMO₃ (M = Mn, Fe, Co, Ni) perovskite-supported gold catalysts for selective gas-phase ethanol oxidation. Catalysts.

Author, A. A., Author, B. B., & Author, C. C. (2025). Structural regulation of NiFe LDH under spontaneous corrosion to enhance the oxygen evolution properties. ChemSusChem.

Author, A. A., Author, B. B., & Author, C. C. (2025). Exploring the efficiency of N, N-dimethylformamide for aqueous zinc-sulfur batteries. Science China Chemistry.

Author, A. A., Author, B. B., & Author, C. C. (2024). Expediting corrosion engineering for sulfur-doped, self-supporting Ni-Fe layered dihydroxide in efficient aqueous oxygen evolution. Catalysts.

Author, A. A., Author, B. B., & Author, C. C. (2024). Rational design of electrolyte additives for improved solid electrolyte interphase formation on graphite anodes: A study of 1,3,6-hexanetrinitrile. Energies.

Author, A. A., Author, B. B., & Author, C. C. (2024). Phase modulation of nickel-tin alloys in regulating electrocatalytic nitrogen reduction properties. Rare Metals.

Chun-Liang Chang | Materials Science | Best Researcher Award

Dr. Chun-Liang Chang | Materials Science | Best Researcher Award

National Atomic Research Institute | Taiwan

Author Profile

Scopus

🌱 Early Academic Pursuits

Dr. Chun-Liang Chang laid a strong academic foundation in materials science and optoelectronics at the prestigious National Sun Yat-sen University in Taiwan, where he earned both his Master’s and Doctoral degrees. His academic journey was marked by deep curiosity for high-temperature materials and solid-state energy technologies—an interest that soon transformed into a lifelong research mission.

🏛️ Professional Endeavors

With more than two decades of experience, Dr. Chang has steadily risen through the ranks of research leadership. He currently serves as Deputy Director of the Department of Physics at NARI, while also leading critical national projects on plasma-sprayed metal-supported solid oxide cells (SOC). His career path includes key appointments at the Institute of Nuclear Energy Research, and a formative stint as a Visiting Researcher at NRC-IFCI in Canada, underscoring his global research influence.

🔬 Contributions and Research Focus

Dr. Chang’s work has significantly advanced the field of solid oxide fuel and electrolysis cells, with a special emphasis on atmospheric plasma spraying (APS) techniques. His innovations in hydrogen generation at high temperatures and solid-state battery development are pushing the boundaries of energy conversion and storage technologies. His efforts directly support the clean energy transition by enhancing the efficiency, scalability, and material resilience of SOC systems.

🏆 Accolades and Recognition

Dr. Chang's contributions have not gone unnoticed. His pioneering research has earned him:

  • ➤The Platinum Award at the Taipei International Invention & Technology Expo (2012) 🥇

  • ➤A Gold Medal from the Nuremberg International Invention Exhibition (2016) 🏅

  • ➤The prestigious 13th National Innovation Award in Taiwan (2016) for academic excellence 🎓

  • ➤Multiple Outstanding R&D Service Performance Awards from the Ministry of the Interior (2011, 2012) 🇹🇼

These accolades affirm his role as a national asset in Taiwan's innovation ecosystem.

🌍 Impact and Influence

Through his leadership in government-backed R&D projects and international collaborations, particularly in Canada, Dr. Chang has accelerated the application of advanced plasma and SOC technologies. His insights have helped align research output with industrial needs, creating scalable solutions in decarbonized energy systems and promoting cross-border technological exchange.

🌟 Legacy and Future Contributions

Dr. Chun-Liang Chang stands at the forefront of materials innovation in energy technology. With his current projects focused on solid-state battery optimization and metal-supported SOC fabrication, his work promises to revolutionize energy infrastructure and storage systems. His legacy will be one of bridging fundamental science with real-world impact, training future leaders, and driving Taiwan's role in sustainable technology development.

Publications


📄 Fabrication and Electrochemical Performance of Reversible Metal‑Supported Solid Oxide Cells via Atmospheric Plasma Spraying

Authors: Chun‑Liang Chang, Chun‑Huang Tsai, Chang‑Shiang Yang, Ching‑Yun Yang, et al.
Journal: Electrochimica Acta
Year: 2025


📄Effect of Electric Current on Cathode‑Side Contact Resistance in SOFC Stacks

Authors: Wei‑Ja Shong, Chien‑Kuo Liu, Wei‑Xin Kao, Chun‑Huang Tsai, Chun‑Liang Chang, Yung‑Neng Cheng
Journal: International Journal of Hydrogen Energy
Year: 2025


📄 Characterization of Thin Metal‑Supported Solid Oxide Fuel Cells Fabricated through Atmospheric Plasma Spraying

Authors: C. Tsai, C. Yang, C. Chang, et al.
Journal: Fuel Cells
Year: 2023


Shengyang Dong | Materials Science | Best Researcher Award

Prof. Shengyang Dong | Materials Science | Best Researcher Award

Nanjing University of Information Science and Technology | China

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 📚

Prof. Shengyang Dong embarked on his academic journey at Nanjing University of Aeronautics and Astronautics, where he earned his Doctor of Engineering degree in June 2019. During his Ph.D., he had the invaluable opportunity to study as an exchange scholar at Oregon State University under the guidance of Prof. Xiulei Ji (2016–2017). This exposure enriched his expertise and broadened his research horizons. He later joined Nanjing University of Information Science and Technology, marking the start of an illustrious academic career. Prof. Dong’s academic roots laid the foundation for his groundbreaking work in sustainable energy storage and conversion systems.

Professional Endeavors 🏛️

After joining Nanjing University of Information Science and Technology, Prof. Dong dedicated himself to advancing research in energy storage. As a Macao Young Scholar (2023–2025), he expanded his professional experience at the University of Macau. His efforts have resulted in the successful completion of seven research projects and the publication of 61 SCI papers, garnering over 5,300 citations. Prof. Dong has also made significant contributions through consultancy projects, editorial roles, and collaborations with renowned researchers worldwide. His professional journey reflects a blend of academic rigor and innovative vision.

Contributions and Research Focus 🔬

Prof. Dong’s research primarily targets sustainable energy storage and conversion technologies, focusing on aqueous batteries, Na-ion batteries, and dual-ion batteries. He pioneered studies on the electrode–charge carrier ion interaction, revealing its profound impact on electrochemical performance. By exploring the role of chemical bonding, such as hydrogen bonds in NH4+ and metal oxide systems, he introduced novel factors influencing battery design. These findings have paved new paths for optimizing electrode and charge carrier interactions, offering a transformative approach to energy storage device development.

Accolades and Recognition 🏆

Prof. Dong's achievements have earned him recognition in academic and professional circles. He holds nine patents and has contributed chapters to two notable books, enhancing the understanding of energy storage systems. He serves on the editorial boards of leading journals like Materials Research Letters and Rare Metals. His contributions to the field are widely acknowledged, with collaborators spanning institutions such as Zhejiang University, Nanjing Tech University, and the City University of Hong Kong. Prof. Dong’s work continues to inspire innovation and collaboration in energy storage research.

Impact and Influence 🌍

The impact of Prof. Dong’s research extends beyond academic publications. His insights into electrode–ion interactions have reshaped the design principles for electrochemical storage devices, influencing both theoretical studies and practical applications. By addressing challenges in sustainability and performance, his work contributes significantly to global efforts in developing efficient energy storage solutions. His patents and consultancy projects underscore the translational impact of his research, bridging the gap between academia and industry.

Legacy and Future Contributions 🔮

As an academic leader, Prof. Dong’s legacy lies in his transformative contributions to sustainable energy technologies. His dedication to mentoring the next generation of scientists, collaborating with global experts, and exploring innovative research avenues ensures a lasting impact. Looking ahead, his work promises to drive advancements in energy storage solutions, aligning with the world’s transition to renewable energy systems. With a robust foundation and a visionary approach, Prof. Dong is poised to leave an enduring mark on the field of energy storage and beyond.

 

Publications


📄Fast synthesis of high-entropy oxides for lithium-ion storage
Author(s): Ren, R., Xiong, Y., Xu, Z., Yin, K., Dong, S.
Journal: Chemical Engineering Journal
Year: 2024


📄Ru-induced lattice expansion of metallic Co with favorable surface property for high-efficiency water electrolysis
Author(s): Shen, J., Zhang, M., Huang, Y., Wang, S., Shao, H.
Journal: Applied Catalysis B: Environmental
Year: 2024


📄Aqueous “rocking-chair” Mn-ion battery based on an industrial pigment anode
Author(s): Dong, S., Xu, Z., Cao, Z., Li, J., Dong, X.
Journal: Chemical Engineering Journal
Year: 2024


📄Synthesis of spinel (Mg₀.₂Co₀.₂Ni₀.₂Cu₀.₂Zn₀.₂)Fe₂O₄ in seconds for lithium-ion battery anodes
Author(s): Ren, R., Wu, D., Zhang, J., Zhang, Y., Dong, S.
Journal: Journal of Materials Chemistry A
Year: 2024


📄3D Printing of MXene-Enhanced Ferroelectric Polymer for Ultrastable Zinc Anodes
Author(s): Zhu, G., Zhang, H., Lu, J., Pang, H., Zhang, Y.
Journal: Advanced Functional Materials
Year: 2024


 

Wenbing Li | Materials Science | Best Researcher Award

Assoc Prof Dr. Wenbing Li | Materials Science | Best Researcher Award

Jiangnan University | China

Author Profile

Orcid

Early Academic Pursuits

Wenbing Li embarked on his academic journey with a relentless pursuit of knowledge, earning his Ph.D. from Harbin Institute of Technology in 2019. Under the esteemed guidance of Prof. Jinsong Leng, an Academician of the Chinese Academy of Sciences, Wenbing's academic foundation was solidified. Further enhancing his expertise, he pursued joint doctoral studies at the University of Colorado at Boulder from 2017 to 2018, under the mentorship of Prof. Yifu Ding. This international exposure broadened his horizons and enriched his research perspectives.

Professional Endeavors

In 2019, Wenbing Li joined Jiangnan University, marking the inception of his professional career. As an Associate Researcher in the College of Textile Science and Engineering, he has demonstrated a commitment to excellence in research and academia.

Contributions and Research Focus

Wenbing Li specializes in Shape Memory Composites, particularly focusing on Shape Memory Polymer Composites. His research journey has delved into diverse facets, including chemical structure design, property enhancement, advanced manufacturing, and potential applications. Notably, his contributions extend beyond national borders, with numerous publications in internationally recognized journals.

Accolades and Recognition

Wenbing Li's exceptional contributions have not gone unnoticed. He has been recognized with prestigious awards, exemplifying his commitment to excellence and innovation.

Impact and Influence

With an impressive cumulative impact factor of 66.4 over the last three years, Wenbing Li's work has made a significant mark in the field of Shape Memory Polymer Composites. His research has practical implications, evident in the recently published paper on the use of near-infrared (NIR) in driving shape memory composites.

Legacy and Future Contributions

Wenbing Li's legacy lies in his dedication to advancing the understanding and applications of Shape Memory Polymers. As he continues his journey, his work is poised to shape the future of materials science, leaving an indelible mark on the academic and industrial landscape. His innovative contributions are paving the way for the next generation of researchers and professionals in the field.

Notable Publications

Poly(ethylene-co-vinyl acetate)/Fe3O4 with near-infrared light active shape memory behavior 2024

Shape memory polymer micropatterns with switchable wetting properties 2023 (1)

Ultrathin flexible electrospun EVA nanofiber composite with electrothermally-driven shape memory effect for electromagnetic interference shielding 2022 (24)

Recent advances and perspectives of shape memory polymer fibers 2022 (19)

Application and Development of Shape Memory Micro/Nano Patterns 2021 (13)

 

 

Kun Chang | Materials Science | Best Researcher Award

Dr. Kun Chang | Materials Science | Best Researcher Award

Nanjing University of Aeronautics and Astronautics | China

Author Profile

Google Scholar

Early Academic Pursuits

Dr. Kun Chang embarked on his academic journey at Zhejiang University, earning his Ph.D. in Chemistry in 2012. His commitment to excellence began during his undergraduate studies at Henan Normal University, culminating in a solid foundation for his future research endeavors.

Professional Endeavors

Dr. Chang's international exposure started with a postdoctoral research fellowship at the University of Western Ontario, Canada. Subsequently, he contributed significantly as a researcher at the National Institute for Materials Science in Japan. Currently, he holds the prestigious position of Professor at Nanjing University of Aeronautics and Astronautics, showcasing his diverse and enriching professional journey.

Contributions and Research Focus

Renowned for his expertise in materials science, Dr. Chang's research revolves around innovative composite functional nanomaterials, solar-catalytic conversion materials, and energy storage materials. His pioneering work includes material structure and interface manipulation, catalysis, and the synthesis of functional nano-composite materials. His research impact extends to the development of technologies enhancing solar utilization and energy storage.

Accolades and Recognition

Dr. Chang's stellar contributions have garnered global recognition. As an Academician of the European Academy of Sciences and a member of the Chinese Thousand Young Talents Plan, he exemplifies excellence. His inclusion in the "Six Talent Peaks" High-level Talent Program and the "Changkong Elite" Talent Program reflects his standing as a distinguished professional. Notably, his work has been acknowledged in "China's Top 100 Most Influential International Academic Papers."

Impact and Influence

With an H-index of 52 and over 13,000 citations, Dr. Chang's influence is evident in the scientific community. His over 120 SCI papers in top-tier journals attest to the significance of his contributions. His research has advanced the fields of solar catalysis, energy conversion, and materials science, leaving a lasting impact on the academic landscape.

Legacy and Future Contributions

Dr. Kun Chang's legacy is marked by transformative research in materials science. His pioneering technologies in solar utilization and energy storage are foundational. As he continues to lead projects, mentor future scholars, and innovate in materials science, Dr. Chang's legacy is poised for enduring contributions to sustainable energy and materials research.

Notable Publications

Boost of solar water splitting on SrTiO3 by designing V-ions center for localizing defect charge to suppress deep trap 2023 (2)

Mechanistic Understanding of Alkali‐Metal‐Ion Effect on Defect State in SrTiO3 During the Defect Engineering for Boosting Solar Water Splitting 2023 (7)

Understanding targeted modulation mechanism in SrTiO3 using K+ for solar water splitting 2022 (14)

La,Al-Codoped SrTiO3 as a Photocatalyst in Overall Water Splitting: Significant Surface Engineering Effects on Defect Engineering 2021 (45)

In Situ Assembly of MoSx Thin‐Film through Self‐Reduction on p‐Si for Drastic Enhancement of Photoelectrochemical Hydrogen Evolution 2020 (25)