Peter Waldner | Chemistry | Best Research Article Award

Assist. Prof. Dr. Peter Waldner | Chemistry | Best Research Article Award

University of Leoben | Austria

Assist. Prof. Dr. Peter Waldner is an established researcher in geochemistry and materials thermodynamics, with a strong focus on phase equilibria, Gibbs energy modeling, and high-temperature mineral systems. His scholarly output comprises 32 research documents, which have received 636 citations from 501 citing publications, resulting in an h-index of 12, indicating consistent academic influence. His work centers on the Cu–Fe–S system, addressing solid and liquid solution behavior through advanced thermodynamic modeling techniques. Notable contributions include Gibbs energy modeling of high-temperature bornite and intermediate solid solutions, enabling accurate calculation of phase equilibria at elevated temperatures. Published in leading journals such as Chemical Geology and Journal of Phase Equilibria and Diffusion, his research provides critical insights into mineral stability, metallurgical processes, and geochemical systems. Overall, his work significantly advances the understanding of thermodynamic properties governing complex sulfide systems and their applications in Earth and materials sciences.

Citation Metrics (Scopus)

800

600

400

200

0

Citations
636

h-index
12

i10-index
N/A

Citations

h-index

i10-index


View Scopus Profile

Top Publications

Xin Wang | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Xin Wang | Chemistry | Best Researcher Award

Zhengzhou University | China

Assoc. Prof. Dr. Xin Wang is an accomplished researcher in the field of chemistry and nanomaterials, with a strong focus on advanced energy storage and conversion systems. His research spans lithium-ion and lithium-sulfur batteries, metal-air batteries, supercapacitors, fuel cells, electrocatalysis, CO₂ reduction, and solar cells. Over the years, he has made significant contributions to the controllable synthesis of alloy-based nanomaterials, the development of high-entropy alloys, and the application of innovative catalysts for electrochemical CO₂ conversion and energy storage. His academic output is substantial, with 52 documents published, garnering 4,164 citations overall (3,400 since 2020), reflecting his consistent influence in the scientific community. He holds an h-index of 32 (30 since 2020) and an i10-index of 52, showcasing both the depth and breadth of his impactful work. His publications in high-impact journals, including Nature Communications, Journal of the American Chemical Society, Advanced Functional Materials, and Journal of Materials Chemistry A, underscore his role as a leading scientist in sustainable energy research. Recognized with multiple awards, fellowships, and competitive research grants, he continues to drive innovation in nanomaterials, electrocatalysis, and green energy technologies, shaping future directions in electrochemistry and materials science.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

Cai, M., Dong, Y., Xie, M., Dong, W., Dong, C., Dai, P., Zhang, H., Wang, X., Sun, X., Zhang, S., Yoon, M., Xu, H., Ge, Y., Li, J., & Huang, F. (2023). Stalling oxygen evolution in high-voltage cathodes by lanthurization. Nature Energy, 8(2), 159–168.

Fan, H., Si, Y., Zhang, Y., Zhu, F., Wang, X., & Fu, Y. (2024). Grapevine-like high entropy oxide composites boost high performance lithium sulfur batteries as bifunctional interlayers. Green Energy & Environment, 9(3), 565–572.

Wang, X., Miao, M., Tang, B., Duan, H., Zhu, F., Zhang, H., Zhang, X., Yin, W., & Fu, Y. (2023). Chlorine-induced mixed valence of CuOx/C to promote the electroreduction of carbon dioxide to ethylene. Nano Research, 16(20), 8827–8835.

Zhang, Y., Yu, Q., Wang, X., & Guo, W. (2023). Conversion of nitrogenous small molecules into value-added chemicals by building N–C bonds. Chemical Engineering Journal, 474, 145899.

Chai, D., Yan, H., Wang, X., Li, X., & Fu, Y. (2024). Retuning solvating ability of ether solvent by anion chemistry toward 4.5 V class Li metal battery. Advanced Functional Materials, 34(23), 2310516.

Yang, W., Xu, T., Fan, H., Yang, C., Sun, W., Ma, X., Wang, X., & Fu, Y. (2024). Selective and bifunctional catalytic electrochemical conversion of organosulfide molecule by high-entropy carbides. Advanced Functional Materials, 34(24), 2409450.

Wang, X., Li, W., Lv, X., & Broekmann, P. (2024). When chiral chemistry meets electrochemistry: A virgin land of an academic gold mine. Matter, 7(10), 2626–2788.

Cao, M., Li, W., Li, T., Zhu, F., & Wang, X. (2024). Polymetallic amorphous materials: Research progress in synthetic strategies and electrocatalytic applications. Journal of Materials Chemistry A, 12(30), 15541–15557.

Cui, T., Xu, J., Wang, X., Liu, L., Xiang, Y., Zhu, H., Li, X., & Fu, Y. (2024). Highly reversible transition metal migration in superstructure-free Li-rich oxide boosting voltage stability and redox symmetry. Nature Communications, 15, 4742.

Duan, H., Li, W., Ran, L., Zhu, F., Li, T., Miao, M., Yin, W., Wang, X., & Fu, Y. (2024). In-situ electrochemical interface of Cu@Ag/C towards the ethylene electrosynthesis with adequate *CO supply. Journal of Energy Chemistry, 99, 292–299.

Ma, X., Zhang, Y., Yang, W., Liu, C., Wang, X., & Fu, Y. (2025). Defect-engineered NbSx as an efficient cathode host for high-performance Li–organosulfur batteries. ChemSusChem. Advance online publication. e202500983.

Cao, M., Miao, H., Li, J., Liu, C., Wang, X., & Fu, Y. (2025). Tailoring the ionomer type to optimize catalyst microenvironment for enhanced CO2 reduction in membrane electrode assembly. Carbon Energy. Advance online publication.

Surbhi Gupta | Physics and Astronomy | Best Researcher Award

Dr. Surbhi Gupta | Physics and Astronomy | Best Researcher Award

Indian Institute of Technology, Delhi | India

Dr. Surbhi Gupta is a materials physicist whose expertise spans magnetic oxides, Heusler alloys, thin films, and advanced synthesis & characterization techniques. After earning her Ph.D. in Physics for work on multiferroic hexaferrites and their composites, she has been a Post-Doctoral Research Associate at premier institutions like IIT Bombay and IIT Delhi. Her work combines both independent and collaborative research, focusing on structure-property correlations in magnetic and intermetallic materials, spintronic device development, topological transport phenomena (such as the Topological Hall Effect), and the use of neutron & X-ray diffraction to probe crystal and magnetic structures. According to her ResearchGate profile, she has 17 publications and 127 citations so far. Her Google Scholar metrics indicate an h-index of 5, with 17 documents contributing to that profile. Her multidisciplinary research integrates cleanroom fabrication, thin film growth, magnetic and dielectric measurements, and computational techniques, making significant strides toward next-generation electronic, quantum, and spintronic materials.

Profiles : Google Scholar

Featured Publications

“Skyrmion phase in polycrystalline GdRu2Si2 revealed by magnetic susceptibility, topological Hall effect, and Shubnikov–de Haas-like quantum oscillations”

“Griffiths phase-like behavior with compensated ferrimagnetism and spin valve effect in quaternary Heusler alloy CuNiCrAl”

“Coexisting cubic and tetragonal phases with ferrimagnetism in equiatomic quaternary Heusler alloys: CuTCrAl (T = Co and Fe)”

“Insights into the Conduction Mechanism of Magneto-Dielectric BaFe10.5In1.5O19: An Impedance Spectroscopy and Ac Conductivity Study”

“Investigation of Magnetic Properties and Converse Magnetoelectric Effect in the composite of doped barium hexaferrite with potassium niobate, 0.5BaFe10Sc2O19-0.5KNbO3 and 0.5BaFe10In2O19-0.5KNbO3”

“Evidence for cluster spin-glass like phase with longitudinal conical magnetic structure in Ga doped M-type barium hexaferrite, BaFe10Ga2O19”

“Magnetodielectricity induced by coexisting incommensurate conical magnetic structure and cluster glass-like states in polycrystalline BaFe10In2O19”

“Effect of Scandium substitution on Magnetic and transport properties of the Barium hexaferrites”

“Spin-Phonon Coupling Mediated Magneto-Dielectricity in Indium Doped Barium Hexaferrite (BaFe10.5In1.5O19)”

“Observation of magnetoelastic and magnetoelectric coupling in Sc doped BaFe12O19 due to spin-glass-like phase”

Uzma Parveen Shaikh | Chemistry | Editorial Board Member

Dr. Uzma Parveen Shaikh | Chemistry | Editorial Board Member

Dr. Rafiq Zakaria College for Women | India

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Uzma Parveen Shaikh built her academic foundation in chemistry, earning both a master’s degree and a doctorate in the discipline. Her early education was marked by a strong inclination toward analytical and inorganic chemistry, with a particular focus on solvent extraction, spectrophotometric methods, and separation techniques for precious and transition metals. This academic grounding, coupled with a passion for research, positioned her to explore complex chemical phenomena and develop innovative solutions in analytical chemistry.

Professional Endeavors

Dr. Shaikh serves as an Assistant Professor of Chemistry at Dr. Rafiq Zakaria College for Women, Aurangabad, where she has been dedicated to teaching and guiding students for over a decade. Her teaching career is seamlessly integrated with her research pursuits, enabling her to create a dynamic learning environment that blends theoretical knowledge with experimental practice. She has also presented her research at several national and international conferences, contributing to scholarly discussions and scientific advancements in her field.

Contributions and Research Focus

Her research is centered on the synthesis of novel extractants and their application in the separation and determination of precious and rare metals such as palladium, rhodium, platinum, and gold. She has extensively studied Schiff base ligands, sulphur-containing extractants, and their spectrophotometric applications. Beyond metal extraction, her work extends to environmental chemistry, including physico-chemical studies of water quality and the isolation of catalytic materials from industrial waste. Her publications also cover bio-evaluation, thermodynamic studies, and the role of information technology in education, reflecting a multi-disciplinary approach.

Accolades and Recognition

Dr. Shaikh has earned recognition through numerous publications in reputed national and international journals. Her research has been presented at prestigious conferences, often earning appreciation for its originality and applicability. She has been invited to share her expertise on various academic platforms, reinforcing her status as a respected figure in the chemistry research community.

Impact and Influence

Her scientific contributions have significantly advanced methods of metal extraction, offering more efficient and selective processes for industrial and analytical applications. Her studies on environmental monitoring have also influenced best practices in water quality analysis and sustainable chemical usage. In academia, she has inspired students to pursue research-oriented careers, thus extending her impact beyond her direct scholarly work.

Legacy and Future Contributions

Dr. Shaikh’s legacy lies in her meticulous research methodology, her ability to bridge theoretical chemistry with practical applications, and her dedication to mentoring the next generation of chemists. Moving forward, she aims to expand her research in green chemistry, develop more sustainable extraction processes, and contribute to the broader field of material science, catalysis, and environmental protection.

Publications


Article: Solvent extraction of Nickel (II) from hydrochloric acid media using DMABIMTT
Authors: Uzma P. Shaikh, Vinod Shelke, Sarika Jadhav
Journal: Journal of Engineering and Technology Management
Year: 2024


Conference Paper: Solvent extraction of Zn(II) from hydrochloric acid media using DMABIMTT
Authors: Uzma P. Shaikh (presenter)
Conference: National Conference on IISTCS 23, Department of Chemistry, Deogiri College, Aurangabad, MS, India
Year: 2023


Article: Complexation, Bio-evaluation, Magnetic Susceptibility and Thermodynamic study of Newly Synthesized Pharmacologically active Schiff base with La(III), Ce(III) and Sm(III)
Authors: Zamzam Taher Omar, Shivaji Jadhav, Rashmi Pathrikar, Shaikh Uzma, Megha Rai
Journal: Asian Journal of Research in Chemistry
Year: 2022


Article: Ternary complex formation equilibria of tetradentate Schiff base ligand with Zn(II) and dipeptides
Authors: Sarika M. Jadhav, Vinod A. Shelke, Uzma P. Shaikh
Journal: International Journal of All Research Education and Scientific Methods
Year: 2021


Conference Paper: Determination of tannins in tea and coffee samples
Authors: Uzma P. Shaikh (presenter)
Conference: National Convention of Chemistry Teachers (NCCT 2020)
Year: 2020


Conclusion

Through her dedication to research, teaching, and knowledge dissemination, Dr. Shaikh has strengthened the link between advanced chemical research and its practical applications. Her focus on precious metal extraction, environmental chemistry, and novel analytical techniques ensures her continued relevance in addressing both industrial and environmental challenges. She stands as a role model for aspiring researchers and remains committed to advancing the frontiers of chemistry.

 

Bing Zhao | Earth and Planetary Sciences | Best Researcher Award

Mr. Bing Zhao | Earth and Planetary Sciences | Best Researcher Award

Guilin University of Technology | China

Author Profile

Scopus

Early Academic Pursuits

Mr. Bing Zhao’s academic journey in geosciences began with a Bachelor's degree in Resource Exploration Engineering from Jiangcheng College of China University of Geosciences, where he acquired foundational knowledge in petrology, structural geology, and crystallography. He further deepened his expertise through a Master's degree in Geology at Guilin University of Technology , studying advanced geochemistry, mineralogy, and metallogenic theories. Currently, he is a Doctoral Candidate in Geological Resources and Geological Engineering at Guilin University of Technology, with a focus on granite geology, geochemical exploration, and frontiers in Earth sciences.

Professional Endeavors

Mr. Zhao has held prominent roles in both research and applied geological engineering. He has been serving as an Engineer at the Guangxi Mineral Resources Reserve Evaluation Center, currently seconded to the Geological Survey Department of the Guangxi Natural Resources Department. His responsibilities include managing digital transformation projects for mineral resource oversight, coordinating the full cycle of geological survey operations, and contributing to high-level policy and planning documents. Previously, as an Assistant Engineer at the Guangxi Geophysical Exploration Institute , he gained valuable field experience through geochemical surveys and tourism geology assessments.

Contributions and Research Focus

Mr. Zhao has actively contributed to a variety of research projects centered around geological surveys, mineral resource assessments, and digital modeling of deposits. Noteworthy among his contributions is the integration of geological datasets into 3DMINE software for digital modeling and spatial analysis, particularly in the exploration of quartz sand deposits in Beihai, Guangxi. He was also instrumental in drafting the Guangxi Geological Survey Plan and the Exploration Work Plan for Continental Quartz Sand Deposits. His doctoral research compares Indosinian basic magmatism in South China with the Emeishan Large Igneous Province, demonstrating his commitment to advancing geochemical and isotopic methodologies.

Accolades and Recognition

Mr. Zhao’s academic and professional excellence has been consistently recognized. He has received the “Second Prize” at the Academic Annual Conference of Guilin University of Technology, in addition to being named an Excellent Intern and Excellent Graduate. He was also awarded a university-level second-class scholarship in recognition of his academic performance and research promise.

Impact and Influence

Through his involvement in regional and national-level planning documents, Mr. Zhao has made significant contributions to the strategic development of geological survey systems in Guangxi. His work in creating digital platforms for ore prospecting and geological data management demonstrates his ability to bridge traditional fieldwork with cutting-edge digital tools, thus modernizing mineral resource exploration and policy implementation.

Legacy and Future Contributions

Mr. Bing Zhao is poised to be a transformative figure in geological research and mineral resource management. His interdisciplinary expertise in petrology, isotopic geochemistry, and digital modeling positions him to lead innovative projects that enhance resource evaluation and sustainability. As he continues his doctoral research and contributes to policy and practice, Mr. Zhao is expected to leave a lasting impact on the fields of geology, exploration engineering, and geoinformatics.

Publications


Provenance and Geological Significance of Cenozoic Sandstones in the Nankang Basin, Southern Cathaysia Block, China
Authors: Bing Zhao, Guojun Huang, Xiangke Wu, Shangyu Guo, Xijun Liu, Huoying Li, Hailin Huang, Hao Wu
Journal: Minerals
Year: 2025


Sr-Nd-Hf isotopic and platinum-group elemental characteristics of the Maxionghui greenstone in western Guangxi: Implications for magmatic evolution and sulfide mineralization
Authors: Zhao B., Liu X.J., et al.
Journal: Acta Petrologica (Zone 2 SCI Journal)
Year: 2022


Geochronology, isotopic and Platinum-group elemental geochemistry of lavas and dykes from western Guangxi in the outer zone of Emeishan mantle plume, SW China
Authors: Zhao B., Liu X., Li Z., et al.
Conference Proceeding: EGU General Assembly Conference Abstracts (SCI-indexed conference proceeding)
Year: 2021


Conclusion

Mr. Bing Zhao represents the next generation of geological scientists who combine traditional field expertise with advanced analytical tools and strategic planning. With a strong academic background, a portfolio of impactful projects, and recognized research contributions, he is well-positioned to drive future advancements in Earth and planetary sciences. His trajectory reflects a commitment to excellence, innovation, and public service, making him a deserving candidate for the Best Researcher Award.

Rubby Mahajan | Materials Science | Best Researcher Award

Dr. Rubby Mahajan | Materials Science | Best Researcher Award

Shri Mata Vaishno Devi University | India

Author Profile

Scopus

Google Scholar

Early Academic Pursuits

Dr. Rubby Mahajan embarked on her academic journey with a strong foundation in Physics, earning a Ph.D. in 2021 from Shri Mata Vaishno Devi University, Katra. Her doctoral research focused on the synthesis and spectral studies, particularly in spectroscopy, following a M.Sc. in Condensed Matter Physics and a B.Sc. with a diverse curriculum including English, Mathematics, Physics, and Computer Applications.

Professional Endeavors

Dr. Rubby Mahajan has accumulated extensive teaching experience alongside her research pursuits. She taught for over four years at the School of Physics in SMVDU Katra during her research period. Additionally, she served as an Assistant Professor at University Institute of Engineering and Technology (UIET), Janglote, University of Jammu, and Govt. Degree College Kishtwar, Jammu & Kashmir.

Contributions and Research Focus

Dr. Rubby Mahajan's research revolves around the structural and optical characterization of various phosphors doped with rare-earth ions. Her work has significantly contributed to understanding the luminescent properties and applications of materials like magnesium pyrophosphate, zinc aluminate, and others. Her expertise lies in synthesizing and evaluating these materials for potential technological applications.

Accolades and Recognition

Dr. Rubby Mahajan's contributions have been recognized through numerous publications in reputable journals such as the Journal of Alloys and Compounds, Journal of Materials Science, and Optik. Her papers have consistently contributed to the scientific community, earning recognition in terms of impact factor and citation counts.

Impact and Influence

Beyond her research, Dr. Rubby Mahajan's impact extends to her active participation in conferences and symposia where she presents her findings, influencing the academic discourse in materials science and photonics. Her role as an educator has also influenced the next generation of physicists and researchers.

Legacy and Future Contributions

Dr. Mahajan's legacy in the field of spectroscopy and materials science continues to grow through her ongoing research and academic contributions. Her future endeavors aim to delve deeper into the synthesis of novel phosphors and their applications in areas such as solid-state lighting and displays.

 

Notable Publications

Spectroscopic study of yellowish white light emitting MgP2O6: Dy3+ phosphor 2024

Influence of Sm3+ ion doping on the surface and photoluminescence properties of Ba3Zr2O7 phosphor 2023 (5)

A review report on structural and optical characterization of rare earth/transition metal doped pyrophosphate phosphors 2022 (3)

Effect of Eu3+ activator on spectral investigation of red emitting MgP2O6 phosphate 2022 (4)

X-ray photoemission and spectral investigations of Dy3+ activated magnesium pyrophosphate phosphors 2019 (39)

 

 

 

Geetha S | Physics and Astronomy | Best Researcher Award

Dr. Geetha S | Physics and Astronomy | Best Researcher Award

Chevalier T. Thomas Elizabeth College for Women | India 

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Geetha S. embarked on her academic journey with distinction, completing her high school and higher secondary education with first-class honors in 1999 and 2001, respectively. She pursued a Bachelor's degree in Physics from Ethiraj College for Women, affiliated with the University of Madras, graduating in 2004 with first-class honors and distinction. Continuing her academic excellence, Dr. Geetha earned her Master’s degree in Physics in 2006 from the same institution, securing a university rank. She further advanced her studies with an M.Phil in Physics from Bharathidasan University in 2007, achieving first-class honors and distinction. Currently, she is finalizing her Ph.D. at S.D.N.B. Vaishnav College for Women, affiliated with the University of Madras, with a thesis focused on "Crystal Structure, Molecular Docking, and Quantum Chemical Calculations of Some Medicinally Important Organic Molecules."

Professional Endeavors

With 18 years of teaching experience, Dr. Geetha S. has been a dedicated educator in the field of physics, specializing in crystallography. She has attended three orientation/refresher courses and presented ten papers at national and international conferences and seminars. Her involvement in academic development is evident from her participation in over 30 faculty development programs (FDP) and workshops. Dr. Geetha has also contributed as a NEET/JEE coach for nine years and conducted NPTEL certificate courses in Experimental Physics with elite grades from IIT Madras.

Contributions and Research Focus

Dr. Geetha's research is centered on crystallography and its applications in medicinal chemistry. Her notable works include the synthesis, growth, and characterization of single crystals and the study of their structural properties. Her Ph.D. thesis, along with her M.Sc. and M.Phil research, highlights her focus on the crystallographic analysis of organic molecules and their potential medicinal applications. She has published five articles in national journals and six in international journals, with topics ranging from structural studies to molecular docking investigations. Her work extends to book chapters, including one on the anti-COVID-19 molecular docking investigation of 2-(2-Formylphenoxy)acetamide.

Accolades and Recognition

Dr. Geetha S. has been recognized for her academic and research contributions, including being awarded an elite grade in the NPTEL certificate course by IIT Madras. Her participation as a resource person at various educational institutions and her role as an external examiner in city colleges further underscore her expertise and dedication to the field of physics. Her contributions to conferences and seminars have also been acknowledged, with numerous presentations and publications in reputable journals.

Impact and Influence

Dr. Geetha's impact extends beyond academia through her involvement in curriculum planning, examination supervision, and association activities at Chevalier T. Thomas Elizabeth College for Women. As a coordinator of the Physics Research Centre and a member of various academic committees, she has played a crucial role in shaping the educational framework and research culture within her institution. Her membership in professional bodies like the Indian Association of Physics Teachers reflects her commitment to advancing the field of physics education.

Legacy and Future Contributions

Dr. Geetha S. has established a strong foundation in crystallography and medicinal chemistry, contributing significantly to the academic community through her research and teaching. Her ongoing work in crystal structure analysis and molecular docking studies promises to enhance the understanding of organic molecules and their applications in medicine. As she continues her research and academic endeavors, Dr. Geetha is poised to make further impactful contributions, fostering innovation and excellence in the field of physics and beyond.

 

Notable Publications

Synthesis, Crystal Structure, Spectroscopic Characterization, in vitro, Molecular docking and DFT studies of 1- (Tert-Butyl) 2-Methyl (2S, 4R)-4-Hydroxy Pyrrolidine-1,2-Dicarboxylate 2024

Crystal structure, spectral characterization, in vitro, molecular docking and DFT studies of pyranopyrazole derivatives 2024

Synthesis, Crystal Structure, Spectroscopic Characterization and Anti-COVID-19 Molecular Docking Investigation of 2-(2-Formylphenoxy)acetamide 2024

 

 

 

 

 

Dinesh Kumar Chaudhary | Physics and Astronomy | Best Researcher Award

Dr. Dinesh Kumar Chaudhary | Physics and Astronomy | Best Researcher Award

Tribhuvan University | Nepal

Author Profile

Scopus

Orcid

Early Academic Pursuits

Dr. Dinesh Chaudhary commenced his academic journey with a Bachelor's degree in Physics from Tribhuvan University, Kathmandu, Nepal. He proceeded to earn a Master's and eventually a Ph.D. in Physics from the same institution, demonstrating a steadfast commitment to academic excellence from the outset.

Professional Endeavors

Throughout his career, Dr. Chaudhary has been actively engaged in teaching and research at Amrit Campus, Tribhuvan University. He has been imparting knowledge in both undergraduate and postgraduate physics courses since 2004 and 2010, respectively, showcasing his dedication to nurturing future generations of physicists.

Contributions and Research Focus

Dr. Chaudhary's research endeavors span a wide array of topics in the field of physics, with a particular emphasis on materials science and nanotechnology. He has conducted several research projects investigating the electrical, optical, and sensing properties of various semiconductor materials, contributing significantly to the advancement of knowledge in these areas.

Accolades and Recognition

His contributions to the field have been recognized through memberships in esteemed organizations such as the Nepal Physical Society and the IEEE EDS Society. Additionally, his research publications in national and international journals have garnered attention and acclaim from the scientific community, further solidifying his reputation as a prominent figure in his field.

Impact and Influence

Dr. Chaudhary's research has not only expanded the frontiers of scientific knowledge but also holds practical implications in areas such as sensor technology, renewable energy, and nanoelectronics. His work on gas sensors, thin-film technology, and nanomaterials has the potential to address pressing societal challenges and drive innovation in various industries.

Legacy and Future Contributions

As Dr. Chaudhary continues his academic journey, his legacy of scholarly excellence and dedication to research will undoubtedly inspire future generations of physicists. His ongoing efforts to explore new avenues in materials science and nanotechnology promise to yield further insights and innovations, shaping the landscape of physics research for years to come.

Notable Publications

Wide-range ethanol sensor based on a spray-deposited nanostructured ZnO and Sn–doped ZnO films 2024

Structural, mechanical, electronic and optical properties of MgZnO3 perovskite: First-principles study 2023 (2)

Influence of nanoparticle size on the characterization of ZnO thin films for formaldehyde sensing at room temperature 2023 (11)

Mechanism of Imprinting Process in the Ni-P Metallic Glass Films: A Molecular Dynamics Study 2023 (3)

Unsteady Radiative Maxwell Fluid Flow over an Expanding Sheet with Sodium Alginate Water-Based Copper-Graphene Oxide Hybrid Nanomaterial: An Application to Solar Aircraft 2022 (10)

Prescribed Thermal Activity in the Radiative Bidirectional Flow of Magnetized Hybrid Nanofluid: Keller-Box Approach 2022 (13)

Hamid Reza Lashgari | Engineering | Best Researcher Award

Dr. Hamid Reza Lashgari | Engineering | Best Researcher Award

SRG Global Asset Care | Australia

Author Profile

Scopus

Early Academic Pursuits

Dr. Hamid Reza Lashgari embarked on his academic journey by completing a degree in Metallurgy and Materials Science and Engineering from the University of Tehran in 2008. He further pursued his academic aspirations by obtaining a Materials Engineering degree from UNSW, Sydney, graduating in 2015.

Professional Endeavors

Dr. Lashgari has cultivated a distinguished career path characterized by his roles as a Metallurgist/Materials Engineer at ALS/SRG Global, a Technical Officer at UNSW School of Materials Science, and a Materials Engineer at TECHNICO, Asset Integrity Department.

Contributions and Research Focus

With over 7 years of experience, Dr. Lashgari has specialized in failure analysis of metals and alloys, welding, corrosion analysis, and advanced materials characterization techniques. His research focuses on fitness-for-service assessment, risk-based inspection studies, and mechanical testing, among other areas.

Accolades and Recognition

Dr. Lashgari's contributions have been recognized through numerous honors and awards, including tuition fee scholarships and certificates of reviewing from esteemed journals. He has also received accolades for his pioneering work in establishing the Asset Integrity Department at TECHNICO.

Impact and Influence

Dr. Lashgari's research publications, which span various prestigious journals, attest to his significant impact on the field of materials engineering. His work has contributed to advancements in failure analysis, computational modeling, and the development of innovative materials.

Legacy and Future Contributions

Through his dedication to advancing materials engineering and his commitment to excellence, Dr. Lashgari has established a legacy of impactful research and professional achievements. His future contributions are poised to further enrich the field, driving innovation and addressing critical challenges in materials science and engineering.

Notable Publications

Fitness-for-Service Assessment of a Hydrogen-Induced Crack in an Inlet Gas Separator Pressure vessel using Computational Modelling 2024

Numerical and experimental failure analysis of wind turbine blade fastener 2024

Failure Analysis of a Fractured Pallet Hook 2023

Heat treatment response of additively manufactured 17-4PH stainless steel 2023 (10)

Dry sliding wear characteristics, corrosion behavior, and hot deformation properties of eutectic Al–Si piston alloy containing Ni-rich intermetallic compounds 2022 (7)

 

 

 

Welela Meka | Chemistry | Editorial Board Member

Mr. Welela Meka | Chemistry | Editorial Board Member

Mattu University | Ethiopia

Author Profile

Sopus

Early Academic Pursuits

Welela Meka embarked on her academic journey at Mettu University, Ethiopia, where she earned her BSc degree in Chemistry in 2017 with an outstanding CGPA of 3.91. Her commitment to academic excellence laid the foundation for her future endeavors.

Professional Endeavors

Since 2020, Welela Meka has been serving as a Lecturer in the Department of Chemistry at Mettu University, contributing to the education and development of undergraduate students. Prior to this role, from 2017 to 2018, she gained experience as a Graduate Assistant-I in the same department, showcasing her dedication to academic growth.

Contributions and Research Focus

Welela Meka actively engages in research, with a focus on Organic Chemistry, Polymer Chemistry, Natural Product Chemistry, Material Chemistry/Sciences, Biochemistry, Medicinal Chemistry, Chemical Engineering, and Applied Chemistry. Her diverse research projects encompass topics such as biodiesel production, antioxidant activity of plant extracts, synthesis of novel derivatives, and the application of biopolymers in pharmaceutical and drug delivery.

Accolades and Recognition

Welela Meka's academic journey has been marked by excellence, evident in her CGPA achievements during both her BSc and MSc studies. Her noteworthy contributions to research, along with her commitment to teaching, have earned her recognition within the academic community.

Impact and Influence

As a lecturer and researcher, Welela Meka has a direct impact on the education of future scientists. Her work in various committees, including staff development and curriculum review, reflects her commitment to enhancing educational standards.

Legacy and Future Contributions

Welela Meka's legacy is shaped by her dedication to advancing knowledge in the field of chemistry. Her research outputs, committee involvement, and teaching contributions contribute to the university's academic environment. In the future, she aims to further explore innovative solutions in the realm of chemistry, leaving a lasting impact on the scientific community.

Notable Publications

Optimization and characterization of biodiesel from waste cooking oil using modified CaO catalyst derived from snail shell 2023 (5)

Pharmaceutical and drug delivery applications of pectin and its modified nanocomposites 2022 (23)

Pharmaceutical and drug delivery applications of chitosan biopolymer and its modified nanocomposite: A review 2022 (22)