Giovanna Maresca | Materials Science | Best Researcher Award

Dr. Giovanna Maresca | Materials Science | Best Researcher Award

Customs Agency and Monopolies | Italy

Author Profile

Scopus

Orcid

Early Academic Pursuits

Dr. Giovanna Maresca pursued her higher education with a focus on chemistry and materials science. She engaged in significant research from the outset of her career, beginning with her involvement in the project "Hyrides as high-capacity anodes for lithium ion batteries" at "La Sapienza" University of Rome. Her academic journey included synthesizing and studying electrolytic systems compatible with high-capacity hydride-based anodes, laying a strong foundation for her future research endeavors in battery technology.

Professional Endeavors

Dr. Maresca has accumulated extensive professional experience through various prestigious fellowships and research grants across multiple countries:

* Chemist at Customs and Monopolies Agency (ADM), Bologna, Italy (04/18/2022 – CURRENT): Dr. Maresca currently works in this role, applying her expertise in chemistry within the regulatory framework of excise, customs, and monopolies.

* Visiting Fellow at Bernal Institute, University of Limerick, Ireland (01/05/2023 – 30/06/2023): She worked on characterizing post-mortem silicon, hard carbon, and Na-NMO electrodes through XPS and FE-SEM analyses under the supervision of Kevin M. Ryan.

* Research Grant at ENEA Casaccia, Cesano, Italy (04/03/2021 – 18/04/2022): Participated in the European project Si-Drive, focusing on the synthesis and characterization of ionic liquids and innovative electrolytes for lithium batteries. She worked under the guidance of Dr. Giovanni Battista Appetecchi and Prof. Sergio Brutti.

* Samsung Research Fellow at "La Sapienza" University of Rome, Italy (09/30/2016 – 10/30/2020): Worked on the project "Solid-state batteries using novel composite anodes" in collaboration with SAMSUNG, focusing on the synthesis and optimization of electrode composite materials. This fellowship included a period as a visiting fellow at Samsung R&D Institute Japan, studying electrode materials for solid-state batteries under the supervision of Seitaro Ito and Yuichi Aihara.

  • Research Fellow at Politecnico di Turin DISAT – Applied Science Department Technology/ENEA Casaccia, Turin, Italy (15/03/2014 – 14/03/2015): Engaged in the European project MARS-EV, working on the synthesis and characterization of ionic liquids and innovative electrolytes for lithium batteries.

Contributions and Research Focus

Dr. Maresca's research primarily focuses on the development and optimization of materials for energy storage, particularly lithium-ion and solid-state batteries. Her contributions include:

* Synthesis and characterization of innovative electrolytes and electrode materials.

* Development of high-capacity anodes and optimization of composite materials for solid-state batteries.

* Extensive chemical-physical characterization and electrochemical testing of battery components.

* Pioneering research on post-mortem analysis of battery electrodes to improve their performance and longevity.

Accolades and Recognition

Dr. Maresca has been recognized for her significant contributions to battery technology and materials science through prestigious fellowships and research grants. Her collaborations with leading institutions and corporations such as Samsung and ENEA underscore her impact in the field.

Impact and Influence

Dr. Maresca's work has had a profound impact on the development of next-generation energy storage solutions. Her research on high-capacity anodes and solid-state batteries contributes to advancements in electric vehicle technology and sustainable energy storage systems. Her collaborative efforts with international research institutions have also facilitated the exchange of knowledge and innovation in materials science.

Legacy and Future Contributions

Dr. Maresca's continued research and professional activities promise to further enhance the performance and safety of battery technologies. Her ongoing work at the Customs and Monopolies Agency, along with her involvement in cutting-edge research projects, positions her as a key contributor to the future of sustainable energy storage solutions. Her legacy lies in her commitment to advancing battery technology, paving the way for more efficient and durable energy storage systems in the years to come.

 

Notable Publications

Improved Compatibility of α‐NaMnO2 Cathodes at the Interface with Ionic Liquid Electrolytes 2024

Outstanding Compatibility of Hard-Carbon Anodes for Sodium-Ion Batteries in Ionic Liquid Electrolytes 2023 (1)

Silicon‐Based Composite Anodes for All‐Solid‐State Lithium‐Ion Batteries Conceived by a Mixture Design Approach 2023 (5)

Sodium-Conducting Ionic Liquid Electrolytes: Electrochemical Stability Investigation 2022 (8)

Sn/C composite anodes for bulk-type all-solid-state batteries 2021 (9)

 

 

 

 

Soundharrajan Vaiyapuri | Energy | Best Researcher Award

Dr. Soundharrajan Vaiyapuri | Energy | Best Researcher Award

Chungnam Nationan University | South Korea

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Soundharrajan Vaiyapuri's academic journey began with a strong foundation in Chemical and Electrochemical Engineering. He completed his Bachelor of Technology at the Central Electrochemical Research Institute (CECRI) in Karaikudi, Tamil Nadu, India. His passion for energy storage technology led him to pursue a combined master's and doctoral course at Chonnam National University, South Korea, where he earned his Ph.D. in Materials Science and Engineering. His thesis, titled "Rapid fabrication and evaluation of high-energy cathodes for Sodium-Ion Battery," laid the groundwork for his future research endeavors in the field of energy storage.

Professional Endeavors

Dr. Vaiyapuri's professional career is marked by significant contributions to the field of material chemistry and energy storage. He began his career as a Processing Engineer at Micropack Pvt Ltd in Bangalore, India, where he honed his skills in process control and development. His journey in academia and research took a major leap when he joined Chonnam National University as a Postdoctoral Researcher, leading the Engineering Research Center grant, the biggest research grant in South Korea. He later joined MEET - Münster Electrochemical Energy Technology in Germany, working on high-energy-density and safe zero-Co Li-Ion batteries using non-critical raw materials and green processes. Currently, he is a Postdoctoral Researcher at Chungnam National University, South Korea, leading a team in the BK-21 research grant for future batteries.

Contributions and Research Focus

Dr. Vaiyapuri's research focuses on the design and implementation of rechargeable lithium-ion batteries, sodium-ion batteries, and aqueous-ion batteries. His expertise encompasses various aspects of battery fabrication and characterization, including material synthesis, electrochemistry, and advanced battery analysis. He has developed high-energy inorganic cathode materials for sodium-ion batteries and aqueous-ion batteries, contributing significantly to the advancement of energy storage technology. His innovative approaches include the development of a new synthesis method for high-energy polyanion cathodes for sodium-ion batteries and the establishment of patents for novel cathode materials.

Accolades and Recognition

Throughout his career, Dr. Vaiyapuri has received numerous accolades and recognition for his contributions to the field of energy storage. Notably, he was awarded the Best Poster Award at the 2020 Virtual MRS Spring/Fall Meeting & Exhibit for his work on aqueous rechargeable Zn-Ion batteries. His research has been presented at prestigious international conferences, including the 4th International Conference on New Energy and Future Energy Systems in Macao, China, and the 6th International Symposium on Advanced Electromaterials in Jeju, South Korea.

Impact and Influence

Dr. Vaiyapuri's work has had a profound impact on the field of energy storage, particularly in the development of eco-friendly energy storage devices and high-energy cathodes for sodium-ion batteries. His innovative research has led to the improvement of energy efficiency and cost reduction in battery materials, contributing to the sustainability and advancement of energy storage technologies. His mentoring and leadership in guiding master's and Ph.D. students have also played a crucial role in shaping the next generation of researchers in the field.

Legacy and Future Contributions

Dr. Vaiyapuri's legacy is marked by his relentless pursuit of innovation and excellence in material chemistry and energy storage. His contributions have paved the way for future advancements in battery technology, with a focus on sustainability and efficiency. As he continues to lead and inspire research in the field, his future contributions are anticipated to drive significant breakthroughs in energy storage solutions, further cementing his position as a pioneering researcher in material chemistry.

 

Notable Publications

Two in one: The use of hexagonal copper sulfide (CuS) nanoparticles as a bifunctional high-performance cathode and as a reinforced electrolyte additive for an all-solid-state lithium battery 2024

Decoding the Manganese-Ion Storage Properties of Na1.25V3O8 Nanorods 2024 (1)

Pentlandite Compound-Anchored CuSCN as a Stable Electrocatalyst in Highly Alkaline Solutions 2024

Na3VMn0.5Ti0.5(PO4)3/C with active Na+ hopping sites for high-rate and durable sodium-ion batteries 2023 (7)

Exploring low-cost high energy NASICON cathodes for sodium-ion batteries via a combined machine-learning, ab initio, and experimental approach 2023 (6)