Meiyan Gao | Chemistry | Best Research Award

Dr. Meiyan Gao | Chemistry | Best Research Award

University of California, Berkeley | United States

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 📚

Dr. Meiyan Gao’s academic journey began at Yantai University, where she earned a Bachelor’s degree in Applied Chemistry. With a GPA of 3.63, her undergraduate work set a foundation in chemical research, mentored by Prof. Tao He. She advanced her studies with a Master’s in Inorganic Chemistry at Fuzhou University, in collaboration with the Fujian Institute of Research on the Structure of Matter (CAS), where her research on titanium-oxo clusters and photocatalytic applications, guided by Profs. Jian Zhang and Lei Zhang, laid the groundwork for her future pursuits.

Professional Endeavors 🧪

Dr. Gao’s career reflects a profound commitment to cutting-edge chemistry. She served as an Assistant Researcher at the Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, where her expertise grew in synthesizing titanium-oxo clusters and exploring their photocatalytic properties. Currently, she is a Postdoctoral Scholar at UC Berkeley under Prof. Omar M. Yaghi, focusing on the chemistry of MOFs, COFs, and ZIFs in reticular chemistry, a field pushing boundaries in materials science.

Contributions and Research Focus 🔬

Dr. Gao’s research is highly influential in the realms of reticular and inorganic chemistry. She has published 38 peer-reviewed articles, including in Nature Communications and Journal of the American Chemical Society. Her contributions to MOFs, COFs, and titanium-oxo clusters, including her pivotal work on CO₂ reduction and photocatalysis, have garnered over 1,300 citations. Her recent book chapter on titanium-oxo clusters in Atomically Precise Nanochemistry is a testament to her expertise in this specialized field.

Accolades and Recognition 🏅

Dr. Gao’s accomplishments have been celebrated with numerous awards. Highlights include the 2024 Carbon Future Young Investigator Award, the 2023 Chinese Government Award for Outstanding Self-Financed Students Abroad, and the Exploration Excellent Award from Adamas (2022, 2023). She has also been recognized with the Outstanding Graduate Award from Fuzhou University, exemplifying her commitment to academic excellence early on.

Impact and Influence 🌍

As an invited reviewer and youth editorial board member for journals like SmartMat and eScience, Dr. Gao contributes to the direction of emerging research. Her patent disclosures on titanium-oxo clusters underline her role in developing sustainable chemical technologies, particularly in carbon-neutral and photocatalytic applications.

Legacy and Future Contributions 🌱

Dr. Gao’s work in metal-organic frameworks and sustainable chemical solutions positions her as a thought leader with long-term impact on environmental chemistry. Her involvement in editorial and guest editor roles reflects her influence in shaping future research trajectories, while her collaborative work at UC Berkeley signals exciting developments in reticular chemistry. Her legacy promises to drive forward both academic inquiry and practical applications in material science and sustainable chemistry.

 

Publications


  • 📄 "A cluster-nanozyme-coenzyme system mimicking natural photosynthesis for CO₂ reduction under intermittent light irradiation"
    Authors: Cui, X., Bai, H., Zhang, J., ... Lu, Z., Xiong, Y.
    Journal: Nature Communications
    Year: 2024

  • 📄 "Conjugated microporous polymer derived hierarchically porous N-rich nanocarbon as a durable electrocatalyst for oxygen reduction reaction in Zn-air battery"
    Authors: Liu, L., Xu, Z., Xia, Y., ... Zhang, Z., Wang, H.-L.
    Journal: Chemical Engineering Journal
    Year: 2024

  • 📄 "Cross-Linking CdSO₄-Type Nets with Hexafluorosilicate Anions to Form an Ultramicroporous Material for Efficient C₂H₂/CO₂ and C₂H₂/C₂H₄ Separation"
    Authors: Li, D., Gao, M.-Y., Deng, C.-H., ... Yang, Q.-Y., Song, B.-Q.
    Journal: Small
    Year: 2024

  • 📄 "Light and Guest Responsive Behavior in a Porous Coordination Network Enabled by Reversible [2+2] Photocycloaddition"
    Authors: Gao, M.-Y., Liu, L., Deng, C., ... Kaskel, S., Zaworotko, M.J.
    Journal: Angewandte Chemie - International Edition
    Year: 2024

  • 📄 "Tuning the local coordination environment of silver(I) coordination networks with counterions for enhanced electrocatalytic CO₂ reduction"
    Authors: Cui, X., Wang, X., Fu, C., ... Kong, T., Xiong, Y.
    Journal: Science China Chemistry
    Year: 2024

 

Hathaikarn Manuspiya | Materials Science | Best Researcher Award

Prof Dr. Hathaikarn Manuspiya | Materials Science | Best Researcher Award 

The Petroleum and Petrochemical College, Chulalongkorn University | Thailand

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Hathaikarn Manuspiya embarked on her academic journey with a Bachelor's degree in Materials Science from Chulalongkorn University, Bangkok, Thailand, in 1994. She continued her studies in Polymer Science, earning a Master's degree from the Petroleum and Petrochemical College, Chulalongkorn University, in 1997. Pursuing her passion for materials engineering, Dr. Manuspiya received her Ph.D. from Pennsylvania State University, USA, in 2003, focusing on advanced materials science and engineering.

Professional Endeavors

Dr. Manuspiya's professional career is marked by a series of significant roles. From 2003 to 2004, she was a Visiting Researcher at the Materials Research Institute, Pennsylvania State University. She then joined the Petroleum and Petrochemical College at Chulalongkorn University as a Lecturer in 2004, progressing to Assistant Professor by 2006, Associate Professor by 2016, and finally Professor of Polymer Technology in 2018. Her administrative acumen is reflected in her roles as Associate Dean for Research Affairs (2012-2016) and Deputy Director (2016-2020) before becoming the Director of the Center of Excellence on Petrochemical and Materials Technology (PETROMAT) in 2021.

Contributions and Research Focus

Dr. Manuspiya's research is extensive and impactful, spanning ultrasonics, spectroscopy, molecular docking, and density functional theory. Her work in bacterial cellulose, advanced nanomaterials, and bio-additives has led to significant advancements in food packaging, energy storage, and biotechnology. She has led over 50 research projects with substantial funding and has mentored numerous Ph.D. and Master's students, contributing to the academic and professional growth of future scientists.

Accolades and Recognition

Throughout her career, Dr. Manuspiya has received numerous prestigious awards. Notable recognitions include the L'Oréal Thailand “For Women in Science” Fellowship (2011), Honorable Mention Awards from BioPlastics Innovation Contest (2016), and the Most Outstanding in Teaching Award by Chulalongkorn University (2016). In 2023, she was elected to the University Council of Phetchabun Rajabhat University and has been a vital member of various national and international committees.

Impact and Influence

Dr. Manuspiya's influence extends beyond her research. She has significantly contributed to open science through organizing conferences, panel discussions, and science exhibitions. Her consultancy work has facilitated the development of new polymer compounds and innovative industrial solutions, enhancing the practical applications of her research.

Legacy and Future Contributions

Dr. Manuspiya’s legacy is characterized by her dedication to advancing materials science and fostering the next generation of researchers. Her future contributions are expected to continue shaping the fields of petrochemical and polymer technology, with ongoing research projects aimed at sustainable and innovative solutions for industrial and environmental challenges.

 

Notable Publications

Fabrication of a colorimetric film based on bacterial cellulose/metal coordination framework composite for monitoring food spoilage gas 2023 (5)

Enabling high dielectric constant and low loss tangent in BaTiO3–epoxy composites through a 3D interconnected network structure of ceramic phase 2023 (1)

Superhydrophilic bacterial cellulose membranes efficiently separate oil-in-water emulsions 2023 (3)

Nanocomposite films of PLA/PBAT blends incorporated with porous clay heterostructure from mixed surfactant systems and their effect of temperature and pressure on dielectric properties 2023 (1)

Improvement of compatibility, mechanical, thermal and dielectric properties of poly(lactic acid) and poly(butylene adipate‐co‐terephthalate) blends and their composites with porous clay heterostructures from mixed surfactant systems 2022 (3)