Ziang Liu | Engineering | Best Researcher Award

Mr. Ziang Liu | Engineering | Best Researcher Award

Nanjing University | China

Author Profile

Scopus

Orcid

Early Academic Pursuits

Mr. Ziang Liu began his academic journey with distinction at Tianjin University, where he earned his Bachelor of Science in Electronic Engineering. His strong foundation in engineering and mathematics laid the groundwork for advanced research and innovation. Continuing his academic trajectory, he pursued a Master of Science in Electronic Engineering at the prestigious Nanjing University, where he was recognized as an Outstanding Student and awarded the First-class Academic Scholarship.

Professional Endeavors

Ziang has accumulated valuable industry experience through impactful internships. At Meituan Shanghai, he served as an LLMs Evaluation Algorithm Intern, where he designed evaluation schemes and analyzed instruction-following capabilities across large language models such as Qwen, Doubao, ChatGPT 3.5/4, and Llama2-70B.  In another significant role at Alibaba DingTalk in Hangzhou, he worked on the back-end development of Chatmemo, an enterprise AI assistant. There, he implemented knowledge graph subgraph displays and integrated Retrieval-Augmented Generation (RAG), significantly boosting response speed and system performance.

Contributions and Research Focus

Mr. Liu’s core interests revolve around LLMs (Large Language Models), RAG (Retrieval-Augmented Generation), and knowledge graph technologies. He has contributed to the design and optimization of backend systems for intelligent applications in healthcare and enterprise settings. His work on deploying frameworks like Graph RAG and utilizing tools like Redis, MySQL, and Spring Boot has shown practical outcomes in real-world systems, particularly in performance optimization, load balancing, and cache management. His participation in the Nanjing University Intelligent Hospital Project resulted in a custom online medication purchasing system, complete with AI-powered Q&A capabilities and scalable backend infrastructure.

Accolades and Recognition

Ziang Liu’s academic excellence is evident through a remarkable series of accolades earned during both his undergraduate and postgraduate studies. He was honored as the Outstanding Student of Nanjing University in 2023 and received the First-class Academic Scholarship in 2022, recognizing his superior academic performance. His analytical and technical skills were demonstrated through competition achievements, including the Third Prize in the 19th Chinese Graduate Mathematical Modeling Competition (2022) and the Second Prize in the 18th Chinese Electronic Design Competition (2023). Earlier in his academic journey, he was named a Meritorious Winner in the Mathematical Contest in Modeling (MCM) in 2021 and was recognized as an Outstanding Graduate of Tianjin University in 2022. These accomplishments reflect his consistent dedication, innovation, and leadership in engineering and applied mathematics.

Impact and Influence

Ziang Liu’s work has made a tangible impact in both academia and industry. His efforts in improving instruction-following performance in LLMs and optimizing backend systems for enterprise AI applications have proven valuable for real-world implementation. His innovations in intelligent hospital systems demonstrate a commitment to applying advanced AI technologies to enhance societal well-being and operational efficiency.

Legacy and Future Contributions

Poised at the intersection of AI, backend engineering, and applied innovation, Mr. Ziang Liu is emerging as a key contributor to the next generation of AI infrastructure. His hands-on experience with cutting-edge technologies like gRPC, GraphRAG, JWT, and multi-threaded optimization positions him to drive future advancements in AI systems, enterprise platforms, and digital healthcare. With a strong academic record and robust technical expertise, he is well on his way to becoming a leading voice in intelligent systems development.

 

 

Publications


Channel-Dependent Multilayer EEG Time-Frequency Representations Combined with Transfer Learning-Based Deep CNN Framework for Few-Channel MI EEG Classification

Authors: Ziang Liu, Kang Fan, Qin Gu, Yaduan Ruan
Journal: Bioengineering
Year: 2025


Studying Multi-Frequency Multilayer Brain Network via Deep Learning for EEG-Based Epilepsy Detection

Authors: Weidong Dang, Dongmei Lv, Linge Rui, Ziang Liu, Guanrong Chen, Zhongke Gao
Journal: IEEE Sensors Journal
Year: 2021


Ming Cao | Engineering | Best Researcher Award

Prof. Dr. Ming Cao | Engineering | Best Researcher Award

Nanchang University | China

Author Profile

Orcid

🎓 Early Academic Pursuits

Prof. Dr. Ming Cao embarked on his academic journey with a Bachelor's degree in Software Engineering  from Nanchang University. His interdisciplinary curiosity led him to pursue a Master's in Vehicle Engineering , followed by a Doctorate in Mechanical Engineering  from the same institution. This academic progression illustrates his transition from software to hardware systems, laying a solid foundation for his future in automotive and advanced manufacturing research.

🏢 Professional Endeavors

Currently serving as Associate Dean and Associate Professor at the School of Advanced Manufacturing, Nanchang University, Dr. Cao has held numerous academic positions over the years. His career began as an Assistant Lecturer, then Lecturer , and advanced to his current role in 2023. Simultaneously, he is enriching his research profile as a Postdoctoral Researcher at the prestigious Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences . Notably, he also gained international exposure as a Visiting Scholar at the University of Kansas.

🔬 Contributions and Research Focus

Prof. Cao's research sits at the intersection of mechanical engineering, microfluidics, bio-manufacturing, and artificial intelligence. His recent works focus on high-throughput digital microfluidic systems, YOLOv8-based object detection, automated inkjet printing, and cryogenic extrusion technologies. His innovative approaches are evident in impactful publications like:

  •  ➤ YOLOv8-Seg-based evaluation for bioprinting

  •  ➤ AI-enhanced microfluidic systems

  •  ➤ Smart composite hydrogels for flexible strain sensors
    These contributions aim to transform precision manufacturing, sensor development, and biomedical applications.

🏆 Accolades and Recognition

While explicit awards are not listed, Prof. Cao's continuous progression within Nanchang University, international collaborations, and his prolific publication record in MicromachinesACS Applied Polymer Materials, and Fibers and Polymers underscore the academic community’s recognition of his innovative work and leadership in research. His appointment as Associate Dean further reflects his respected status in academic and administrative circles.

🌍 Impact and Influence

Dr. Cao's work is bridging the gap between academia and real-world manufacturing challenges. His research on smart sensors and AI-integrated fabrication methods is pushing the frontiers of intelligent manufacturing and sustainable biomedical device development. Moreover, by mentoring students and contributing to global research dialogue, he is shaping the next generation of engineers and innovators.

🔮 Legacy and Future Contributions

Looking ahead, Prof. Dr. Ming Cao is poised to make landmark contributions in precision bio-manufacturing, AI-integrated engineering, and smart materials. His leadership at Nanchang University and collaboration with CAS suggest continued influence in shaping China's advanced manufacturing roadmap. As technology rapidly evolves, his work will likely be instrumental in crafting more sustainable, intelligent, and adaptable production systems.

Publications


📄 Uniformity evaluation of bio-printer products based on an improved YOLOv8-Seg model
Authors: Cao Ming, Duan Wufeng, Ma Mengxiao, et al.
Journal: Journal of Zhejiang University (Engineering Science)
Year: 2025


📄 Design and Implementation of a High-Throughput Digital Microfluidic System Based on Optimized YOLOv8 Object Detection
Authors: Cao M, Duan W, Huang Z, Liang H, Ai F, Liu X
Journal: Micromachines
Year: 2025


📄 An automated digital microfluidic system based on inkjet printing
Authors: Wansheng Hu, Ming Cao, Lingni Liao, Yuanhong Liao, Yuhan He, Mengxiao Ma, Simao Wang, Yimin Guan*
Journal: Micromachines
Year: 2024


📄 Self-Adhesive, Antifreezing, and Antidrying Conductive Glycerin/Polyacrylamide/Chitosan Quaternary Ammonium Salt Composite Hydrogel as a Flexible Strain Sensor
Authors: Liu S, Wan L, Hu FF, Wen ZW, Cao M., Ai FR
Journal: ACS Applied Polymer Materials
Year: 2023


📄 Cryogenic Extrusion Printing of PCL-HAW Scaffolds and Self-induced Crystalline Surface Modification
Authors: Zhou K., Chen H., Xu Z., Zeng J., Cao M
Journal: Fibers and Polymers
Year: 2024


Xiaoya Wang | Computer Science | Best Researcher Award

Ms. Xiaoya Wang | Computer Science | Best Researcher Award

Beijing University of Posts and Telecommunications | China

Author Profile

Scopus

Orcid

🎓 Early Academic Pursuits

Ms. Xiaoya Wang began her academic journey with a strong foundation in electronics and communication. In 2005, she earned her Master’s degree in Communication and Information Systems from the prestigious Xi’an University of Electronic Science and Technology. Demonstrating an enduring passion for advanced research, she is currently pursuing her Ph.D. at Beijing University of Posts and Telecommunications, specializing in areas crucial to the future of signal intelligence and communications.

🏢 Professional Endeavors

Ms. Wang holds the position of Researcher at the 54th Research Institute of China Electronics Technology Group Corporation (CETC). This institute is renowned for pioneering developments in electronic systems and defense-related technologies. Within this dynamic environment, Ms. Wang plays a pivotal role in pushing forward the frontiers of signal processing and intelligent data processing, contributing to both national-level projects and global innovations.

🔬 Contributions and Research Focus

Ms. Wang’s research is deeply rooted in modulation recognition, signal feature extraction, and integrated sensing and communication (ISAC). She has co-authored impactful publications, including:

📘 "Multi-Feature AND–OR Mechanism for Explainable Modulation Recognition" in Electronics (2025), which offers insights into machine explainability in modulation recognition frameworks.
📗 "RF Signal Feature Extraction in Integrated Sensing and Communication" published in IET Signal Processing (2023), a study enhancing the performance of RF signal analysis under ISAC architectures.

Her contributions emphasize intelligent interpretation of signals, integrating machine learning mechanisms with real-time communication systems.

🏆 Accolades and Recognition

Though currently pursuing her Ph.D., Ms. Wang has already earned recognition for her innovative research and has been published in highly regarded peer-reviewed journals such as Electronics and IET Signal Processing. Her collaborative work with experts like Songlin Sun and Haiying Zhang further illustrates her influence in multidisciplinary research teams.

🌐 Impact and Influence

Ms. Wang’s research holds strategic importance in enhancing signal intelligence, particularly in military communication systems and next-gen wireless technologies. Her work bridges theoretical models with real-world applicability, making signal analysis more transparent, reliable, and intelligent. Her development of explainable AI mechanisms in signal processing is especially vital for defense and critical communication infrastructures.

🌟 Legacy and Future Contributions

As she continues her doctoral studies and deepens her involvement in cutting-edge research, Ms. Xiaoya Wang is poised to be a leading force in intelligent signal processing. Her legacy will likely lie in making signal systems more secure, adaptive, and interpretable, laying the groundwork for smart communication systems of the future. Her forward-thinking approach ensures she will remain a vital contributor to both academic advancement and industrial innovation.

Publications


📄 Multi-Feature AND–OR Mechanism for Explainable Modulation Recognition
Authors: Xiaoya Wang, Songlin Sun, Haiying Zhang, Yuyang Liu, Qiang Qiao
Journal: Electronics
Publication Year: 2025


📄 RF Signal Feature Extraction in Integrated Sensing and Communication
Authors: Xiaoya Wang, Songlin Sun, Haiying Zhang, Qiang Liu, Sourabh Sahu
Journal: IET Signal Processing
Publication Year: 2023


Benjamin Kwakye Danso | Computer Science | Best Paper Award

Mr. Benjamin Kwakye Danso | Computer Science | Best Paper Award

University of Science and Technology of China | China

Author Profile

Scopus

Orcid

Google Scholar

🌱 Early Academic Pursuits

Mr. Benjamin Kwakye Danso began his academic journey in Ghana, earning a DBE in Science and Mathematics from the University of Cape Coast in 2011. He continued to build a strong foundation in mathematics with a B.Ed. in Mathematics from Valley View University. His academic excellence led to recognition on the Vice Chancellor’s List of Excellent Students. Driven by a passion for analytical sciences, he pursued a Master’s degree in Mathematics at Hohai University, China, and is currently a Ph.D. candidate in Statistics at the University of Science and Technology of China, focusing on cutting-edge statistical methods and optimization techniques.

💼 Professional Endeavors

Mr. Kwakye Danso has a rich background in teaching and project leadership. He served as a mathematics and integrated science teacher in Ghana’s education system, holding leadership roles such as Secretary of the PTA and Head of the Examination Committee. His international exposure expanded in China, where he leads the Project Management Team at Grace Outreach Global Foundation. He has also supported various academic and cultural initiatives, including student registration and the Sino-Cultural Festival organization.

🔬 Contributions and Research Focus

Mr. Kwakye Danso's research is deeply rooted in optimization, metaheuristic algorithms, feature selection, and mathematical statistics. His 2024 publication in Expert Systems with Applications introduces a particle-guided metaheuristic algorithm for complex global optimization problems. His interdisciplinary work spans radar systems, agricultural technologies, and data science, contributing to IEEE conferences and journals like Signal ProcessingScience Journal of Chemistry, and Pharmacognosy Journal. His academic rigor is complemented by practical insights in data analysis and high-dimensional feature modeling.

🏆 Accolades and Recognition

His academic achievements have been recognized with Chinese University Scholarships from both Hohai University and the University of Science and Technology of China. Additionally, his placement on the Vice Chancellor’s List reflects his sustained excellence. He has also been selected for prestigious international conferences, such as ASPAI 2022 and IEEE ICSIP 2020.

🌍 Impact and Influence

Benjamin's work bridges applied mathematics and real-world challenges, particularly in optimization and data modeling for signal processing and agricultural innovation. His research has contributed to solving high-dimensional problems in radar communication and food science, while also influencing educational standards in Ghana. His leadership in academic communities and volunteering initiatives exemplifies a commitment to societal advancement through science.

🔮 Legacy and Future Contributions

Mr. Kwakye Danso’s scholarly path showcases an inspiring trajectory of growth from local educator to international researcher. With ongoing Ph.D. research and active membership in global academic networks such as the Institute of Mathematical Statistics and OAAD, he is poised to make substantial contributions to AI-driven optimization, statistical modeling, and STEM education in Africa. His future work promises to enrich both academic theory and practical applications.

 

Publications


📝 Particle guided metaheuristic algorithm for global optimization and feature selection problems

Authors: B.D. Kwakye (Benjamin Danso Kwakye), Y. Li (Yongjun Li), H.H. Mohamed (Halima Habuba Mohamed), E. Baidoo (Evans Baidoo), T.Q. Asenso (Theophilus Quachie Asenso)

Journal: Expert Systems with Applications

Year: 2024


 

Francisco Mena | Computer Science | Best Researcher Award

Mr. Francisco Mena | Computer Science | Best Researcher Award

University of Kaiserslautern-Landau | Germany

Author Profile

Scopus

Orcid

Google Scholar

🎓 Early Academic Pursuits

Mr. Francisco Mena began his academic journey in Santiago, Chile, where he demonstrated early excellence by ranking in the top 10% of his class at the prestigious Federico Santa María Technical University (UTFSM). He earned multiple degrees there, including a Bachelor’s and Master's equivalent in Computer Engineering. His master’s thesis focused on mixture models for learning in crowdsourcing scenarios, an early indicator of his passion for combining probabilistic modeling with real-world data complexities.  Currently, he is pursuing a PhD in Computer Science at RPTU Kaiserslautern-Landau, Germany, where his research delves into data fusion in multi-view learning for Earth observation applications—focusing on handling missing views in complex datasets.

💼 Professional Endeavors

Francisco’s career bridges academia, research, and practical industry contributions. He has held key positions as a student research assistant at DFKI, a visiting PhD researcher at Inria France, and has taught courses in machine learning, computational statistics, and neural networks in Chile and Germany. His practical experience includes work as a front-end and back-end developer and a research assistant for the Chilean Virtual Observatory, handling astroinformatics data from observatories like ALMA and ESO.

🔬 Contributions and Research Focus

Francisco's research sits at the intersection of machine learning, multi-modal data fusion, and unsupervised learning. He has advanced the understanding of deep learning models, particularly variational autoencoders, multi-view learning, and deep clustering. His work tackles computational complexity and seeks to design models that function effectively without heavy human intervention or domain specificity. He has applied his research to areas such as earth observation, vegetation analysis, neural information retrieval, and astroinformatics, making his work both versatile and impactful.

🏆 Accolades and Recognition

Francisco has received numerous scholarships and awards, including the PhD Scholarship from RPTU and the Scientific Initiation Award from UTFSM. His academic excellence and innovative research have also earned him roles as a lecturer, conference presenter, and session chair at international venues. 🏅

🌐 Impact and Influence

With multiple peer-reviewed journal articles and conference papers, Francisco’s contributions are shaping best practices in remote sensing, data fusion, and representation learning. His co-authored works in IEEE JSTARS, Remote Sensing of Environment, and other notable platforms highlight his influence in computational earth sciences and machine learning theory.

🧬 Legacy and Future Contributions

Francisco Mena is building a legacy of scientific rigor, interdisciplinary collaboration, and educational leadership. His focus on reducing dependency on domain-specific data and human labeling aligns with the future of scalable, autonomous machine learning. With a global academic presence and a strong foundation in both theoretical and applied research, Francisco is poised to contribute significantly to the fields of AI, data science, and earth analytics in the years to come.

Publications


📄Missing Data as Augmentation in the Earth Observation Domain: A Multi-View Learning Approach

  • Authors: Francisco Mena, Diego Arenas, Andreas Dengel

  • Journal: Neurocomputing

  • Year: 2025


📄Adaptive Fusion of Multi-Modal Remote Sensing Data for Optimal Sub-Field Crop Yield Prediction

  • Authors: Francisco Mena, Deepak Pathak, Hiba Najjar, Cristhian Sanchez, Patrick Helber, Benjamin Bischke, Peter Habelitz, Miro Miranda, Jayanth Siddamsetty, Marlon Nuske, et al.

  • Journal: Remote Sensing of Environment

  • Year: 2025


📄Common Practices and Taxonomy in Deep Multiview Fusion for Remote Sensing Applications

  • Authors: Francisco Mena, Diego Arenas, Marlon Nuske, Andreas Dengel

  • Journal: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS)

  • Year: 2024


📄Impact Assessment of Missing Data in Model Predictions for Earth Observation Applications

  • Authors: Francisco Mena, Diego Arenas, Marcela Charfuelan, Marlon Nuske, Andreas Dengel

  • Conference Proceedings: IGARSS 2024 – IEEE International Geoscience and Remote Sensing Symposium

  • Year: 2024


📄Assessment of Sentinel-2 Spatial and Temporal Coverage Based on the Scene Classification Layer

  • Authors: Cristhian Sanchez, Francisco Mena, Marcela Charfuelan, Marlon Nuske, Andreas Dengel

  • Conference Proceedings: IGARSS 2024 – IEEE International Geoscience and Remote Sensing Symposium

  • Year: 2024


 

Bing Cai | Computer Science | Best Researcher Award

Mr. Bing Cai | Computer Science | Best Researcher Award

Anhui Institute of Information Technology | China

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 🎓

Mr. Bing Cai embarked on his academic journey with a strong foundation in engineering. He earned his Bachelor of Engineering in Electronics and Information Engineering from Anhui University in 2014, where he developed a keen interest in computing and information systems. His thirst for advanced knowledge led him to pursue a Master of Engineering in Computer Technology at Anhui Polytechnic University, completing his degree in 2024 with a commendable GPA of 3.36. His rigorous academic training laid the groundwork for his expertise in software development and multi-view clustering techniques.

Professional Endeavors 🌟

Mr. Cai has accumulated extensive professional experience in both academia and industry. From 2014 to 2017, he worked as a Software Engineer at iFLYTEK Co., Ltd., where he contributed to the development of Android and iOS applications. His responsibilities included designing app frameworks, optimizing performance, and conducting comprehensive testing for speech synthesis systems. His tenure at iFLYTEK honed his skills in software architecture, application development, and embedded systems testing. Transitioning to academia in 2017, Mr. Cai served as a Corporate Teacher at Anhui Institute of Information Technology. Here, he played a pivotal role in teaching Web Front-End Development, guiding students in research and graduation projects, and mentoring them for competitions. His ability to bridge theoretical knowledge with practical applications made him a valuable asset in the field of computer and software engineering education.

Contributions and Research Focus 📚

Mr. Cai's research primarily focuses on multi-view clustering, tensor subspace clustering, and machine learning methodologies. His scholarly contributions include several high-impact publications in prestigious journals such as IEEE Transactions on Multimedia, Pattern Recognition, and Signal Processing. His research introduces innovative clustering techniques using tensorized and low-rank representations, significantly advancing the field of multi-view learning. Notably, his studies on high-order manifold regularization and tensorized bipartite graph clustering have provided new insights into handling large-scale and incomplete multi-view data. His work is instrumental in improving data representation and clustering efficiency in artificial intelligence applications.

Accolades and Recognition 🏆

Mr. Cai's dedication to excellence has been recognized with several prestigious awards. In 2023, he won the Bronze Prize in the Anhui Province "Internet+" College Student Innovation and Entrepreneurship Competition, highlighting his innovative approach to problem-solving. He also received the Outstanding Paper Award from the Anhui Association for Artificial Intelligence in 2022, further cementing his reputation as a leading researcher in his field. His academic excellence was also acknowledged through the National Scholarship for Postgraduate Students in 2022, a testament to his scholarly contributions.

Impact and Influence 🌍

Mr. Cai's work has had a profound impact on both academia and industry. His contributions to multi-view clustering have influenced the development of more robust and efficient data analysis techniques in AI and machine learning. His research findings are widely cited, reflecting their significance in advancing computational intelligence. Furthermore, his role as an educator has shaped the next generation of computer scientists, inspiring students to engage in research and innovation.

Legacy and Future Contributions 🚀

With a strong foundation in research and industry, Mr. Cai is poised to make even greater contributions to the field of computer technology. His ongoing work in multi-view clustering and tensor-based machine learning will likely lead to more breakthroughs in AI-driven data processing. As he continues to explore innovative clustering methodologies, his research is expected to influence a wide range of applications, from big data analytics to artificial intelligence-driven decision-making systems. His commitment to excellence ensures that he will remain at the forefront of technological advancements in the years to come.

 

Publications


  • 📄 Multi-view subspace clustering with a consensus tensorized scaled simplex representation
    Author(s): Hao He, Bing Cai, Xinyu Wang
    Journal: Information Sciences
    Year: 2025-03


  • 📄 Tensorized Scaled Simplex Representation for Multi-View Clustering
    Author(s): Bing Cai, Gui-Fu Lu, Hua Li, Weihong Song
    Journal: IEEE Transactions on Multimedia
    Year: 2024


  • 📄 Aligned multi-view clustering for unmapped data via weighted tensor nuclear norm and adaptive graph learning
    Author(s): Bing Cai, Gui-Fu Lu, Liang Yao, Jiashan Wan
    Journal: Neurocomputing
    Year: 2024


  • 📄 Complete multi-view subspace clustering via auto-weighted combination of visible and latent views
    Author(s): Bing Cai, Gui-Fu Lu, Guangyan Ji, Weihong Song
    Journal: Information Sciences
    Year: 2024


  • 📄 Auto-weighted multi-view clustering with the use of an augmented view
    Author(s): Bing Cai, Gui-Fu Lu, Jiashan Wan, Yangfan Du
    Journal: Signal Processing
    Year: 2024


 

Aman Bin Jantan | Computer Science | Best Researcher Award

Assoc. Prof. Dr. Aman Bin Jantan | Computer Science | Best Researcher Award

Universiti Sains Malaysia | Malaysia

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 🎓

Assoc. Prof. Dr. Aman Bin Jantan's academic journey is rooted in a strong foundation in computer science. He earned his Bachelor’s degree (1993) and Master’s in Computer Science (AI) (1996) from Universiti Sains Malaysia (USM), where he laid the groundwork for his expertise in artificial intelligence and software engineering. His research on FrameLog Compiler Construction during his MSc reflected an early inclination toward programming languages and AI-driven system development. His PhD in Software Engineering (2002) from USM further solidified his prowess, focusing on the redefinition of expert system development languages—a groundbreaking contribution to the field.

Professional Endeavors 🏢

Dr. Aman has had an extensive career in both academia and industry. His professional journey began as a Research Officer at USM’s AI Lab in 1993, followed by roles as a Graduate Assistant and Lecturer. His passion for education saw him taking up lecturing positions at Stamford College, UiTM Shah Alam, and USM. Apart from academia, he ventured into the tech industry by establishing his own ICT business, offering software solutions, IT services, and computer training. Since 2002, he has been an integral part of USM’s School of Computer Sciences, where he now serves as an Associate Professor.

Contributions and Research Focus 🔬

Dr. Aman’s research spans across multiple domains, including:
Information Security – Intrusion Detection, Cyberwarfare, Encryption, Steganography, and Electronic Forensics.
Software Engineering – Fault Tolerance, Component-Based System Development, and Software Quality Assurance.
Artificial Intelligence – Machine Learning, Neuro-Fuzzy Systems, and Expert Systems.

His work on network security, intrusion detection, and machine learning-driven cybersecurity solutions has significantly impacted the field. His innovative Honeybee Intelligent Model for Network Zero-Day Attack Detection is a notable contribution that has been widely recognized.

Accolades and Recognition 🏆

Dr. Aman’s excellence in teaching and research has earned him multiple Excellent Service Awards (2007, 2011, 2020). His publications in high-impact journals, including those on financial crime prevention, AI-driven profiling, and cybersecurity measures, have established him as a thought leader in his domain.

Impact and Influence 🌍

As an academic and researcher, Dr. Aman has shaped the next generation of cybersecurity experts and software engineers. His workshops, mentorship, and leadership in the field of information security have influenced policy-making and corporate cybersecurity strategies. His Security and Forensic Research Group Laboratory at USM is a hub for cutting-edge research in cyber defense technologies.

Legacy and Future Contributions 🚀

Dr. Aman’s contributions to artificial intelligence, cybersecurity, and software engineering will continue to shape the landscape of digital security and computing. His commitment to advancing cybersecurity education and research ensures that future professionals will be well-equipped to tackle emerging threats in an increasingly digital world. With a strong portfolio of research, industry collaborations, and mentorship, Dr. Aman remains a driving force in the evolution of AI-driven security solutions. His future work is expected to redefine the intersection of AI and cybersecurity, making digital systems safer and more resilient.

Publications


  • 📄 Enhancing Neighborhood-Based Co-Clustering Contrastive Learning for Multi-Entity Recommendation

    • Authors: J. Liao, Juan; A.B. Jantan, Aman Bin; Z. Liu, Zhe

    • Journal: Engineering Applications of Artificial Intelligence

    • Year: 2025


  • 📄 Digital Forensic Investigation on Social Media Platforms: A Survey on Emerging Machine Learning Approaches

    • Authors: A.A. Kazaure, Abdullahi Aminu; A.B. Jantan, Aman Bin; M.N. Yusoff, Mohd Najwadi

    • Journal: Journal of Information Science Theory and Practice

    • Year: 2024


  • 📄 Digital Forensics Investigation Approaches in Mitigating Cybercrimes: A Review

    • Authors: A.A. Kazaure, Abdullahi Aminu; A.B. Jantan, Aman Bin; M.N. Yusoff, Mohd Najwadi

    • Journal: Journal of Information Science Theory and Practice

    • Year: 2023


  • 📄 A Machine Learning Classification Approach to Detect TLS-Based Malware Using Entropy-Based Flow Set Features (Open Access)

    • Authors: K. Keshkeh, Kinan; A.B. Jantan, Aman Bin; K. Alieyan, Kamal

    • Journal: Journal of Information and Communication Technology

    • Year: 2022


  • 📄 Multi-Behavior RFM Model Based on Improved SOM Neural Network Algorithm for Customer Segmentation (Open Access)

    • Authors: J. Liao, Juan; A.B. Jantan, Aman Bin; Y. Ruan, Yunfei; C. Zhou, Changmin

    • Journal: IEEE Access

    • Year: 2022


 

Fulvio Mastrogiovanni | Computer Science | Best Researcher Award

Prof. Dr. Fulvio Mastrogiovanni | Computer Science | Best Researcher Award

University of Genoa | Italy

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits 🎓

Prof. Dr. Fulvio Mastrogiovanni embarked on his academic journey with a strong foundation in engineering and robotics. He earned his Laurea Degree in Computer Engineering from the University of Genoa, Italy, in 2003, demonstrating exceptional promise with a final grade of 108/100. His thirst for knowledge led him to pursue a PhD in Bioengineering, Materials Science, and Robotics at the same university, which he successfully completed in 2008. His doctoral research set the stage for a future dedicated to advancing artificial intelligence (AI) and robotics.

Professional Endeavors 🏛️

A distinguished academic, Prof. Mastrogiovanni has built an illustrious career spanning multiple prestigious institutions worldwide. Since 2018, he has served as an Associate Professor at the University of Genoa, Italy. His scholarly journey includes visiting professorships at esteemed institutions such as Shanghai Polytechnic University, Keio University, and the Japan Advanced Institute of Science and Technology. His contributions extend beyond academia, having played key roles in international robotics programs, including Erasmus Mundus and JEMARO. Additionally, he has been a driving force in the Digital Innovation Hub – Liguria, leveraging technology for societal advancements.

Contributions and Research Focus 🔬

Prof. Mastrogiovanni's research lies at the intersection of AI and robotics, emphasizing human-robot interaction and cognitive robotics. His work in "embodied Artificial Intelligence" seeks to integrate AI-driven cognitive architectures, perception models, and semantic data processing techniques to enhance robotic autonomy and intelligence. He has pioneered efforts in developing cognitive robotic systems that seamlessly interact with humans, revolutionizing the way robots perceive and respond to their environment. His research projects, such as ROBOSKIN and InDex, have significantly contributed to the evolution of robotic intelligence and machine cognition.

Accolades and Recognition 🏆

His excellence has been recognized through numerous prestigious awards. He was honored with the National Award by Associazione Nazionale Giovani Innovatori in 2021 and has received multiple Best Paper Awards at IEEE and international robotics conferences. His groundbreaking work has earned him invitations to deliver keynote talks at global AI and robotics symposiums, solidifying his reputation as a thought leader in the field.

Impact and Influence 🌍

With over 229 publications, including journal articles, conference papers, book chapters, and patents, Prof. Mastrogiovanni has made a profound impact on the scientific community. His research has amassed over 3,352 citations with an h-index of 32 on Google Scholar. His collaborations with international universities and research institutions have fostered global advancements in robotics, influencing both academic discourse and industrial applications.

Legacy and Future Contributions 🚀

As a mentor, Prof. Mastrogiovanni has supervised numerous PhD and MSc students, shaping the next generation of robotics and AI experts. His leadership roles in major research consortia and technology transfer initiatives underscore his commitment to bridging academic research with real-world applications. Moving forward, he aims to push the boundaries of AI-driven robotics, particularly in medical robotics, cognitive architectures, and autonomous systems. His visionary work continues to redefine human-robot interaction, making significant strides towards an AI-empowered future.

 

Publications


  • 📄 A Novel Method to Compute the Contact Surface Area Between an Organ and Cancer Tissue

    • Authors: Alessandra Bulanti, Alessandro Carfì, Paolo Traverso, Carlo Terrone, Fulvio Mastrogiovanni
    • Journal: Journal of Imaging
    • Year: 2025

  • 📄 A Systematic Review on Custom Data Gloves

    • Authors: Valerio Belcamino, Alessandro Carfì, Fulvio Mastrogiovanni
    • Journal: IEEE Transactions on Human-Machine Systems
    • Year: 2024

  • 📄 Enhancing Machine Learning Thermobarometry for Clinopyroxene-Bearing Magmas

    • Authors: Mónica Ágreda-López, Valerio Parodi, Alessandro Musu, Diego Perugini, Maurizio Petrelli
    • Journal: Computers and Geosciences
    • Year: 2024

  • 📄 Digital Workflow for Printability and Prefabrication Checking in Robotic Construction 3D Printing Based on Artificial Intelligence Planning

    • Authors: Erfan Shojaei Barjuei, Alessio Capitanelli, Riccardo Bertolucci, Fulvio Mastrogiovanni, Marco Maratea
    • Journal: Engineering Applications of Artificial Intelligence
    • Year: 2024

  • 📄 A Hierarchical Sensorimotor Control Framework for Human-in-the-Loop Robotic Hands

    • Authors: Lucia Seminara, Strahinja Dosen, Fulvio Mastrogiovanni, Matteo Bianchi, Simon Watt, Philipp Beckerle, Thrishantha Nanayakkara, Knut Drewing, Alessandro Moscatelli, Roberta L. Klatzky, et al.
    • Journal: Science Robotics
    • Year: 2023

 

Hongzhen Cui | Computer Science | Best Researcher Award

Dr. Hongzhen Cui | Computer Science | Best Researcher Award

University of Science and Technology Beijing | China

Author Profile

Orcid

🚀 Early Academic Pursuits

Dr. Hongzhen Cui embarked on his academic journey in computer science with a Bachelor's degree from Zaozhuang University, where he built a solid foundation in computational principles. His passion for technology and problem-solving led him to pursue a Master's degree at Harbin Engineering University, refining his expertise in advanced computing methodologies. Currently, he is a Ph.D. candidate at the University of Science and Technology Beijing, where he specializes in cutting-edge fields such as Natural Language Processing (NLP), Knowledge Graphs, and Deep Learning, with a strong focus on cardiovascular disease research.

💼 Professional Endeavors

Dr. Cui's career has been marked by a blend of research and practical experience. As a System R&D Engineer at Meituan, he contributed to large-scale distributed systems, optimizing performance and collaborating with cross-functional teams to drive technological advancements. His passion for academia led him to a teaching position at Zaozhuang University, where he inspired students in subjects such as Data Structures, Algorithm Design, and Software Engineering. Through these roles, he has seamlessly combined industry expertise with academic mentorship.

🔬 Contributions and Research Focus

Dr. Cui’s research delves deep into the intersection of artificial intelligence and healthcare. His work in Natural Language Processing and Knowledge Graphs plays a pivotal role in extracting meaningful insights from medical data. With a keen interest in cardiovascular disease feature mining, he develops AI-driven models for disease prediction and analysis, aiding in early diagnosis and medical decision-making. His interdisciplinary approach bridges the gap between engineering and medicine, contributing to the evolution of intelligent healthcare solutions.

🏆 Accolades and Recognition

Dr. Cui’s dedication to research and academia has earned him recognition in both scientific and professional communities. His contributions to NLP and deep learning applications in healthcare have been acknowledged through publications, conference presentations, and collaborative projects. His role as a mentor and lecturer has also been praised for shaping future generations of computer scientists.

🌍 Impact and Influence

Through his research, Dr. Cui has made significant strides in the application of AI to medical diagnostics. His work on disease information extraction and prediction not only enhances medical research but also paves the way for AI-assisted healthcare innovations. As an educator, he has influenced countless students, guiding them towards research excellence and industry preparedness.

🔮 Legacy and Future Contributions

Dr. Cui's future aspirations involve furthering AI’s role in medical advancements, refining predictive models for cardiovascular diseases, and expanding the capabilities of knowledge graphs in healthcare applications. His interdisciplinary research continues to break barriers, promising a future where AI-driven solutions revolutionize disease prevention and treatment.

 

Publications


📄ECG Signal Classification Using Interpretable KAN: Towards Predictive Diagnosis of Arrhythmias
Author(s): Hongzhen Cui, Shenhui Ning, Shichao Wang, Wei Zhang, Yunfeng Peng
Journal: Algorithms
Year: 2025