Aya Chelh | Energy | Best Researcher Award

Dr. Aya Chelh | Energy | Best Researcher Award

Mohammed V University | Morocco

Dr. Aya Chelh is a PhD candidate in Materials Science at University Mohammed V, Rabat, specializing in first-principles computational modeling with expertise in density functional theory (DFT). Her research focuses on investigating structural, electronic, optical, thermoelectric, and hydrogen storage properties of advanced materials, with applications in photovoltaics, spintronics, and sustainable energy technologies. She has contributed significantly to the field through publications in reputed journals such as International Journal of Computational Materials Science and Engineering, Journal of Physics and Chemistry of Solids, Solid State Communications, and Advanced Theory and Simulations. Her studies provide valuable insights into optoelectronic, photocatalytic, and thermodynamic behaviors of perovskites, phosphides, and doped oxides, contributing to renewable energy innovations. With presentations at national and international conferences, Dr. Chelh has actively disseminated her findings to the academic community. She has authored six peer-reviewed journal articles, garnering 25 citations, with an h-index of 3, reflecting the growing impact of her research in computational materials science. Beyond her academic achievements, she has also collaborated on interdisciplinary projects bridging theoretical modeling with experimental synthesis and characterization. Through her innovative work, Dr. Chelh continues to advance sustainable materials design, supporting the global shift toward renewable energy and environmentally friendly technologies.

Profiles : Orcid | Google Scholar

Featured Publications

"DFT investigation of the structural, optoelectronic, thermoelectric, and thermodynamic properties of metal phosphides MP2 (M= Co, Rh, and Ir)"

"First-principles calculations to investigate photovoltaic, photocatalytic, and spintronic properties of Fe-doped and alloyed MgSiO3 perovskite"

"Ab-initio study of the structural, electronic, optical, and thermoelectric properties of chalcogenide-doped Sr2UZnO6"

"First-Principles Study of the Stability, Physical Properties, and Molecular Dynamics in KSrZH6 (Z= Rh, Ir) for Hydrogen Storage Applications"

"Impact of complete sulfur substitution by selenium and tellurium on the structural, electronic, optical, and photocatalytic properties of CaAl2S4: A DFT investigation"

"Compressive strain effects on the photocatalytic and optoelectronic properties of CsInBr3 for efficient hydrogen production: A DFT study"

Lin Ge | Materials Science | Best Researcher Award

Prof. Lin Ge | Materials Science | Best Researcher Award

Nanjing Tech University | China

Author Profile

Orcid

🌱 Early Academic Pursuits

Dr. Lin Ge’s academic journey began at Nanjing Tech University, where he obtained his degrees, showcasing his early dedication to materials science. His academic excellence and curiosity led him to pursue advanced studies in materials engineering, with a specific focus on Solid Oxide Cells. During his time as a visiting scholar and postdoctoral researcher at Nanyang Technological University, he broadened his expertise, gaining valuable international exposure and engaging with advanced research methodologies.

🔬 Professional Endeavors

Currently, Dr. Lin Ge serves as an associate professor and the subdean of the College of Materials Science and Engineering at Nanjing Tech University. In this role, he not only advances his research but also mentors emerging engineers and scientists. He actively participates in significant projects funded by prestigious foundations, including the National Natural Science Foundation of China, the Natural Science Foundation of Jiangsu Province, and the China Postdoctoral Science Foundations, underscoring his contributions to advancing materials science.

📚 Contributions and Research Focus

Dr. Ge’s research primarily centers around Solid Oxide Cells, a field where he has authored over 60 scientific publications. His expertise in this area has positioned him as a notable contributor to the literature on materials engineering and energy storage. As a longstanding reviewer for various scientific journals, he continues to shape research standards in his field. Dr. Ge is also an active member of the Composite Material Society of Jiangsu Province, contributing to the materials science community on a broader scale.

🏆 Accolades and Recognition

Dr. Lin Ge’s work has earned him recognition within both academia and the scientific community. His funded research projects and extensive publications underscore his contributions, and his role as an annual reviewer for renowned journals, including Applied Catalysis B: Environmental and the Journal of Power Sources, is a testament to his respected expertise.

🌍 Impact and Influence

Through his research on Solid Oxide Cells, Dr. Ge has significantly impacted energy storage and environmental sustainability. His contributions to materials science extend beyond his publications, as his work on Solid Oxide Cells holds potential for future technological advancements in clean energy solutions. His influence is also reflected in his mentorship of students and peers, fostering an environment of innovation and intellectual curiosity.

🌟 Legacy and Future Contributions

Dr. Ge’s dedication to materials science positions him as a forward-thinking leader in the field, paving the way for innovations in sustainable energy and advanced ceramics. As he continues to contribute through his research, mentorship, and publications, Dr. Ge is poised to leave a lasting legacy, inspiring future generations of scientists and engineers to explore the vast potential of materials science and its applications in addressing global challenges.

 

Publications


📄 Superior Durability and Activity of a Benchmark Triple‐Conducting Cathode by Tuning Thermo‐Mechanical Compatibility for Protonic Ceramic Fuel Cells

  • Journal: Advanced Functional Materials
  • Year: 2024
  • Authors: Zhexiang Yu, Lin Ge, Qing Ni, Yifeng Zheng, Han Chen, Xingkai Zhou, Yaowei Mi, Bochang Shi, Xiaole Yu, Bangze Wu, et al.

📄 Solid Oxide Electrolyzer Positive Electrodes with a Novel Microstructure Show Unprecedented Stability at High Current Densities

  • Journal: Journal of Materials Chemistry A
  • Year: 2023
  • Authors: Qing Ni, Yu Li, Zongchao Zhu, Zhexiang Yu, Dong Xu, Xiaoming Hua, Yi Zhen, Lin Ge, Lei Bi

 

Shehzad Ahmed | Materials Science | Best Researcher Award

Dr. Shehzad Ahmed | Materials Science | Best Researcher Award

Shenzhen University | China

Author Profile

Scopus

Google Scholar

Early Academic Pursuits 🎓

Dr. Shehzad Ahmed's academic journey began with a Bachelor’s degree in Applied Physics from Kohat University of Science and Technology in Pakistan, where he researched thin film deposition techniques. This foundational interest propelled him toward a Master’s in Applied Physics at the International Islamic University in Islamabad, where he delved into the fascinating dynamics of magnetic nanoparticles. His early work here ignited his passion for materials science, especially in understanding complex material behaviors at the atomic level.

Professional Endeavors 🌍

Dr. Ahmed has held diverse roles, including Lecturer and Research Assistant at the International Islamic University, where he taught physics and developed expertise in nanotechnology research. He later served as an Assistant Professor at Sarhad University in Pakistan, delivering advanced courses in chemistry and supervising student research. His international experience includes a Visiting Fellowship at the Southern University of Science and Technology, Shenzhen, where he currently explores innovative materials for energy applications.

Contributions and Research Focus 🔬

Dr. Ahmed's primary research centers on the atomic structure and behavior of amorphous phase-change memory materials. He explores how structural disorder impacts the electrical, optical, and bonding properties of materials. His extensive work on Sb-Te phase-change memory materials aims to advance next-generation memory devices. Dr. Ahmed also investigates energy materials, batteries, catalysis, and nanotechnology, publishing numerous papers in top-tier scientific journals.

Accolades and Recognition 🏆

Dr. Ahmed's research achievements have been recognized through invitations to prestigious conferences, including the World Young Scientist Summit in Wenzhou and multiple Sino-German Bilateral Symposia on electronic and memory materials. His work has also earned him positions on international research collaborations, highlighting his impact within the global scientific community.

Impact and Influence 🌐

Dr. Ahmed's contributions to phase-change memory and amorphous materials science have paved the way for advancements in memory technology and sustainable energy solutions. His research is influential in guiding the design of high-performance materials, inspiring young scientists and students who look to his work as a foundation in materials science.

Legacy and Future Contributions 🌱

Dr. Ahmed envisions a career focused on pioneering discoveries in condensed matter physics and materials science, aiming to bridge academic research with industrial applications. His commitment to understanding and innovating materials for energy storage and catalysis positions him as a driving force for future advancements, ensuring a lasting legacy in the field of materials science.

 

Publications


  • 📄 "Polarization insensitive non-interleaved frequency multiplexed dual-band Terahertz coding metasurface for independent control of reflected waves"
    Authors: Iqbal, S., Noor, A., Ullah, N., Nisar, M.S., Wong, S.-W.
    Journal: Scientific Reports
    Year: 2024

  • 📄 "Enhanced As-COF nanochannels as a high-capacity anode for K and Ca-ion batteries"
    Authors: Ahmed, S., Ghani, A., Muhammad, I., Tian, X., Yakobson, B.
    Journal: Physical Chemistry Chemical Physics
    Year: 2024

  • 📄 "Revealing half-metallicity: Predicting large bandgaps in halogen-based full-Heusler alloys"
    Authors: Muhammad, I., Ahmed, S., Ullah, N., Tian, X., Zhang, J.-M.
    Journal: Results in Physics
    Year: 2024

  • 📄 "Unveiling the potential of aluminum-decorated 3D phosphorus graphdiyne as a catalyst for N₂O reduction"
    Authors: Ahmed, S., Khan, A.A., Khan, D., Xiaoqing, T., Muhammad, I.
    Journal: Physical Chemistry Chemical Physics
    Year: 2024

  • 📄"Giant Thermomechanical Bandgap Modulation in Quasi-2D Tellurium"
    Authors: Hussain, N., Ahmed, S., Tepe, H.U., Wu, H., Shcherbakov, M.R.
    Journal: Advanced Functional Materials
    Year: 2024