Anding Xu | Energy | Best Researcher Award

Assist. Prof. Dr. Anding Xu | Energy | Best Researcher Award

South China University of Technology | China

Assist. Prof. Dr. Anding Xu is a distinguished researcher in the field of energy storage materials with a focus on advanced sodium-ion and potassium-ion battery technologies. Holding a PhD in Materials Science and Engineering from South China University of Technology (SCUT), he has conducted pioneering research on heteronanostructure interfaces, 2D and porous nanomaterials, novel nanoscale architecture design, and electrode materials surface engineering to enhance energy storage mechanisms. Prior to his PhD, he earned a Master’s degree in Chemical Engineering from SCUT and a Bachelor’s degree in Light Chemical Engineering from Xi’an Polytechnic University. Dr. Xu has served as a Postdoctoral Fellow and currently as an Assistant Research Fellow at the School of Emergent Soft Matter, SCUT, where he focuses on controllable synthesis, interface structure regulation, and the sodium storage mechanism of carbon-based antimony single atoms and clusters composites. With 24 publications, 588 citations, and an h-index of 15, his work has appeared in high-impact journals including Small, Advanced Functional Materials, Journal of Materials Chemistry A, and ACS Applied Materials & Interfaces, covering topics such as MOF-derived porous carbon, Sb atomic clusters, Bi@N-doped carbon sheets, and high-performance anode materials. His research contributions have significantly advanced the understanding of nanostructured electrode materials, demonstrating exceptional potential for next-generation, high-rate, long-life energy storage solutions.

Profile : Scopus

Featured Publications

  • "MOF-Derived Hierarchically Porous Carbon with Orthogonal Channels for Advanced Na-Se Batteries"

  • "Constructing High-content Sb Atomic Clusters and Robust Sb-O-C Bond in Sb/C Composites for Ultrahigh Rate and Long-Term Sodium Storage"

  • "2D Bismuth@N-Doped Carbon Sheets for Ultrahigh Rate and Stable Potassium Storage"

  • "Sb2O3@ Sb nanoparticles impregnated in N-doped carbon microcages for ultralong life and high-rate sodium ion batteries"

  • "Ultrahigh Rate Performance of Hollow Antimony Nanoparticles Impregnated in Open Carbon Boxes for Sodium-Ion Battery under Elevated Temperature"

  • "Alloyed BiSb Nanoparticles Confined in Tremella-Like Carbon Microspheres for Ultralong-Life Potassium Ion Batteries"

  • "CuSe2 Nanocubes Enabling Efficient Sodium Storage"

  • "Confining MoSe2 Nanosheets into N-Doped Hollow Porous Carbon Microspheres for Fast-Charged and Long-Life Potassium-Ion Storage"

  • "Enhanced pseudocapacitance contribution to outstanding Li-storage performance for a reduced graphene oxide-wrapped FeS composite anode"

  • "Sulfur/Nitrogen Co-Doped In-Plane Porous Carbon Nanosheets as Superior Anode of Potassium-Ion Batteries"

 

 

Ji-Won Jung | Materials Science | Best Researcher Award

Assist. Prof. Dr. Ji-Won Jung | Materials Science | Best Researcher Award

Konkuk University | South Korea

Author Profile

Scopus

Orcid

Google Scholar

🎓 Early Academic Pursuits

Dr. Ji-Won Jung began his stellar academic journey with a Bachelor's degree in Materials Science and Engineering from Yonsei University, achieving an outstanding GPA of 4.05/4.50. Driven by curiosity and a passion for advanced materials, he pursued an integrated M.S./Ph.D. program at KAIST, where he specialized in the development and electrochemical evaluation of solid-state electrode materials for various next-generation batteries including Li-, Na-, and K-ion systems. His early mentorship under Professors Kwang-Bum Kim and Il-Doo Kim laid the foundation for his future excellence in battery materials and nanotechnology.

🧑‍🔬 Professional Endeavors

Dr. Jung's career is marked by prestigious positions and collaborations across globally recognized institutions. After completing his doctoral studies, he served as a postdoctoral fellow at KAIST and later joined MIT in Professor Bilge Yildiz’s group, where he gained exposure to cutting-edge research environments. He returned to KAIST before joining the University of Ulsan as an Assistant Professor in 2021. In 2024, he was appointed as an Assistant Professor at Konkuk University, continuing his commitment to high-impact materials research and education.

🔬 Contributions and Research Focus

Dr. Jung is an authority in advanced battery materials, nanostructured electrodes, and thin-film technology. His work spans the synthesis and functionalization of nanofibers, solid electrolytes, and air batteries. He has pioneered research in:

  • Metal-air and solid-state battery systems 🔋

  • Unzipping carbon nanotubes for Li-O₂ batteries

  • 3D-printable and flexible battery platforms

  • Next-gen thin-film lithium batteries for wearable and on-chip applications

He has authored over 49 first/corresponding-author papers and contributed to numerous others in high-impact journals such as Chemical Engineering Journal, Advanced Fiber Materials, and Journal of Materials Chemistry A.

🏆 Accolades and Recognition

Dr. Jung's exceptional work has earned him numerous awards, such as:
🥇 The Best Award at Science Slam-D (2020)
🏅 “Young Engineer Award” from KSMPE (2021)
🏆 Best Business Idea Award by the Ministry of Science and ICT (2017)
🌟 Named a Rising Researcher and Promising Young Scientist by KAST (2017)

These accolades reflect not just innovation, but also his visionary approach to solving complex scientific challenges.

🌍 Impact and Influence

Dr. Jung’s research significantly impacts the global battery and materials science communities. His international collaborations, especially with Nobel laureate Prof. John B. Goodenough at UT Austin, illustrate his role in advancing both the academic and applied dimensions of electrochemical energy storage. With patents granted in Korea, the USA, and Europe, his innovations are poised to shape the future of sustainable energy and smart devices.

🔮 Legacy and Future Contributions

As an educator and researcher, Dr. Ji-Won Jung continues to inspire a new generation of engineers and scientists. His ongoing work at Konkuk University aims to push the boundaries of solid-state and wearable battery technologies. His unique blend of academic rigor, cross-disciplinary knowledge, and industry-oriented innovation ensures that his legacy will influence both the classroom and real-world applications for years to come.

Publication


📄 Manganese Alchemy: Atomic-scale Doping to Miniaturize Cobalt Oxide in Nanofiber Architecture for Ultra-fast Lithium-ion Batteries

  • Authors: Hyunmin Na, Ho-Jin Lee, Dae-Kwon Boo, Ilgyu Kim, Jeong-Ho Park, Jae-Woo Seo, Seon-Jin Choi, Jiyoung Lee, Tae Gwang Yun, Byungil Hwang, Jun Young Cheong, Ji-Won Jung

  • Journal: Chemical Engineering Journal

  • Year: 2025


📄 Investigation of Oxygen-related Defect Engineering in Nonstoichiometric Vanadium Oxides for Electrochromic Zinc-ion Batteries with Superior Electrochromic-electrochemical Performance

  • Authors: Yonghan Kim, Ilgyu Kim, Hye Kang Lee, Ji Won Jung, Tae-gwang Yun

  • Journal: Chemical Engineering Journal

  • Year: 2025


📄 Troubleshooting Carbon Nanotube Bundling Using Electrostatic Energy-Driven Dispersion for LiFePO₄ Bimodal Thick Electrode in Lithium-Ion Batteries

  • Authors: Ilgyu Kim, Jaehong Choi, Hangeol Jang, Pilgun Oh, Ji Won Jung

  • Journal: ACS Nano

  • Year: 2025


📄 Facile Encapsulation Strategy for Uniformly-dispersed Catalytic Nanoparticles/Carbon Nanofibers Toward Advanced Zn–Air Battery

  • Authors: Seong-woon Yoon, Dae Kwon Boo, Hyunmin Na, Ji Won Jung, Hyeong Min Jin

  • Journal: Journal of Materials Chemistry A

  • Year: 2025


📄 Etching-free Fabrication Method for Silver Nanowires-based SERS Sensors for Enhanced Molecule Detection

  • Authors: Yurim Han, Cristiano D’Andrea, Mirine Leem, Paolo Matteini, Byungil Hwang

  • Journal: Engineering Science and Technology, an International Journal

  • Year: 2024


 

Minseong Ko | Energy | Best Researcher Award

Prof. Minseong Ko | Energy | Best Researcher Award

Pukyong National University | South Korea

Author Profile

Scopus

Orcid

🌟 Early Academic Pursuits

Prof. Minseong Ko's journey into the world of materials science and battery technology began with a strong academic foundation. He obtained his Bachelor of Science degree from Pukyong National University in the Department of Materials Science and Engineering. His passion for advanced materials led him to pursue a Master’s degree at Gwangju Institute of Science & Technology (GIST), where he focused on enhancing the sensitivity of GMR Spin Valve Sensors. He continued his academic excellence by earning a Ph.D. in Battery Science & Technology from the Ulsan National Institute of Science & Technology (UNIST). Under the guidance of esteemed mentors, including Prof. Jaephil Cho, he gained deep insights into lithium-ion batteries (LIBs) and energy storage technologies. His academic journey culminated in postdoctoral research at the Massachusetts Institute of Technology (MIT), where he worked under the mentorship of Prof. Ju Li, further strengthening his expertise in nuclear science and engineering.

💼 Professional Endeavors

Currently, Prof. Minseong Ko serves as an Associate Professor in the Department of Metallurgical Engineering at Pukyong National University, Busan, Republic of Korea. His professional trajectory has been marked by his contributions to battery technology and materials science. Throughout his career, he has engaged in cutting-edge research, focusing on the synthesis and functionalization of carbon materials, modification of nanomaterials, and the development of coating equipment for mass production. His role as an educator is equally significant, having taught and mentored students in advanced energy storage materials at prestigious institutions such as UNIST and Pukyong National University.

📈 Contributions and Research Focus

Prof. Ko’s research primarily revolves around all-solid-state batteries and lithium-ion battery (LIB) materials. His pioneering work in synthesizing cathode and anode materials aims to enhance energy storage efficiency, improve fast-charging capabilities, and ensure the non-flammability of LIBs. His expertise extends to in-situ analysis of electrode materials and HPPC (Hybrid Pulse Power Characterization) testing for electric vehicles. Additionally, he has been instrumental in the development of large-scale synthesizing equipment for commercialization, bridging the gap between academic research and industrial application.

His research interests include:

  • Development of high-energy and fast-charging lithium-ion batteries
  • Synthesis and surface modification of electrode materials
  • Fabrication of electrochemical full-cells (pouch and coin-type)
  • Commercialization and mass production of battery materials

🏆 Accolades and Recognition

Prof. Ko’s contributions to battery science have been widely recognized in the academic and industrial sectors. His groundbreaking research has been published in top-tier journals, including Nature Communications, Advanced Energy Materials, ACS Nano, and Nano Letters. These publications highlight his significant contributions to the advancement of high-performance lithium-ion batteries and nanomaterial applications. His work has not only earned him academic accolades but has also positioned him as a leader in the field of energy storage technology.

🔋 Impact and Influence

Through his extensive research and publications, Prof. Ko has made a lasting impact on the field of energy storage. His studies on silicon-based anodes and high-capacity cathode materials have paved the way for more efficient and durable lithium-ion batteries, crucial for applications in electric vehicles and renewable energy systems. His collaborative approach has also contributed to global advancements in materials engineering, fostering partnerships between academia and industry to drive innovation. Beyond research, Prof. Ko is deeply committed to mentoring the next generation of scientists and engineers. His teaching philosophy emphasizes hands-on experimentation and industry collaboration, equipping students with the skills needed to tackle real-world challenges in battery technology.

🌍 Legacy and Future Contributions

Looking ahead, Prof. Minseong Ko aims to further revolutionize battery technology by developing next-generation solid-state batteries with enhanced safety and performance. His research endeavors continue to focus on improving the longevity, efficiency, and sustainability of energy storage systems. As a respected scientist and mentor, he is set to leave a lasting legacy in the fields of materials science and electrochemical energy storage. With his unwavering dedication to innovation and excellence, Prof. Ko’s contributions will undoubtedly shape the future of sustainable energy solutions, benefiting industries and societies worldwide.

 

Publications


📄 "Morphology Control of Al Oxide Coating to Suppress Interfacial Degradation in Ultra-high Nickel Cathode Materials"

  • Authors: Minseong Kim, Jiyun Park, Taewan Kim, Byeonggu Kang, Jaegeon Im, Minseong Ko, Sujong Chae

  • Journal: Electrochimica Acta

  • Year: 2025


📄 "Binder-free CNT-implanted Carbon Cloth and Carbon Felt as Cathode Modifier for Bioelectricity Generation in Sediment Microbial Fuel Cells"

  • Authors: Nurfarhana Nabila Mohd Noor, Rashida Misali, Minseong Kim, Jeongmok Park, Minseong Ko, In-Cheol Lee, Tadashi Hibino, Kyunghoi Kim

  • Journal: Journal of the Taiwan Institute of Chemical Engineers

  • Year: 2025