Rocío Mingorance | Chemical Engineering | Best Research Award

Mrs. Rocío Mingorance | Chemical Engineering | Best Research Award

Ikerlan Technology Research Center | Spain

Author Profile

Orcid

Early Academic Pursuits

Mrs. Rocío Mingorance began her academic journey with a strong foundation in chemical engineering from the University of Granada, where she developed expertise in process engineering and industrial systems. Her educational path expanded with a master’s degree in industrial maintenance engineering from the University of Huelva, which enriched her technical and managerial skills in plant operations and system reliability. Continuing her pursuit of advanced research, she enrolled in a doctoral program in naval and industrial engineering at the University of Coruña in collaboration with the Ikerlan Technology Research Center, where her focus lies on the development of digital twins for process plants.

Professional Endeavors

Her professional career reflects a steady progression through diverse engineering and industrial roles. Beginning with junior engineering positions in thermosolar power plants, she gained hands-on experience in thermal balances, plant operations, and preventive maintenance. Over the years, she expanded her portfolio through roles in research, consultancy, and control room operations, working with leading companies such as Abengoa, Birchman Consulting, Grupo Cosentino, and Marquesado Solar. Currently, she serves as a thermal engineer and algorithms manager at Sunntics, where she leads the design and implementation of advanced thermal control systems to optimize concentrated solar power plants.

Contributions and Research Focus

Mrs. Mingorance’s research and technical contributions have centered on advancing renewable energy technologies, thermal engineering, and digital solutions for industrial systems. Her expertise in developing and applying thermal models for heat and mass transfer has contributed significantly to improving system performance under standard and unexpected conditions. She has also pioneered work on digital twins, offering innovative methodologies to enhance operational strategies and resilience in manufacturing and energy plants. Her publications highlight her contribution to bridging traditional engineering with modern computational tools.

Accolades and Recognition

Her research and professional achievements have been recognized through publications in reputed international journals and conferences. Notably, her work on the evolution of digital twin solutions was presented at the IEEE Smart World Congress, reflecting her standing in the global research community. In addition, her continued contributions to the field of industrial and thermal engineering have positioned her as a promising scholar and professional in advancing sustainable and technologically driven energy solutions.

Impact and Influence

Through her interdisciplinary expertise, Mrs. Mingorance has influenced both industrial practices and academic research. Her ability to integrate advanced modeling techniques with real-world plant operations has enhanced the reliability, efficiency, and safety of thermal and renewable energy systems. Her contributions extend beyond direct applications, inspiring new approaches in engineering education, collaborative industry research, and the adoption of digital innovations in traditional sectors.

Legacy and Future Contributions

Looking forward, Mrs. Mingorance’s ongoing doctoral research in digital twins for process plants is expected to leave a lasting legacy in the field of industrial and naval engineering. By combining her strong background in thermal sciences with cutting-edge computational techniques, she is poised to contribute transformative solutions that support sustainability, automation, and resilience in complex industrial systems. Her career trajectory suggests continued advancements that will influence both academia and industry in the years to come.

Publications


  • Title: A methodology leveraging digital twins to enhance the operational strategy of manufacturing plants in unexpected scenarios

  • Authors: Rocío Mingorance, Diego Crespo Pereira, Jone Uribetxebarria, Urko Leturiondo

  • Journal: Results in Engineering

  • Year: 2025


  • Title: Evolution of Digital Twin solutions in the manufacturing industry

  • Authors: Rocío Mingorance, Diego Crespo Pereira, Jone Uribetxebarria, Urko Leturiondo

  • Journal/Conference: Proceedings of the 2023 IEEE Smart World Congress (SWC)

  • Year: 2023


Conclusion

Mrs. Rocío Mingorance exemplifies the synergy between engineering practice and academic research. With a solid educational foundation, diverse professional experiences, and impactful research contributions, she stands as a leading figure in renewable energy and digital innovation. Her work continues to shape sustainable industrial practices and drive the integration of advanced technologies in energy systems, reflecting a career dedicated to both excellence and progress.

 

Gabriel Roeder | Environmental Science | Best Researcher Award

Mr. Gabriel Roeder | Environmental Science | Best Researcher Award

Technical University of Munich| Germany

Author Profile

Orcid

👨‍🎓 Early Academic Pursuits

Gabriel José Roeder began his academic journey with a global perspective. After completing high school in Brazil and a senior year in Australia, he pursued Chemical and Process Engineering at the Karlsruhe Institute of Technology. He further specialized in Chemical Process Technology at Technical University of Munich (TUM), where he earned his Master’s degree with research on hydrogen transfer reactions. Currently, he is finalizing his Ph.D. (Dr.-Ing.) at TUM in the Chair of Energy Systems, focusing on nitrogen oxide emissions in biomass combustion—a topic crucial for sustainable energy.

🧪 Professional Endeavors

Gabriel has built a strong foundation in applied research and industrial engineering. He has worked as a Research Associate at TUM from 2021 to 2025, playing a central role in the OptiNOx project (FKZ 2219NR211). His responsibilities included designing and operating a 50 kW test rig, conducting emission measurements in power plants, and managing a €640,000 research budget. In July 2025, he joined Stadtwerke München Services GmbH as a Process and Plant Engineer for power plants, taking his academic expertise directly into the energy sector.

🔬 Contributions and Research Focus

Mr. Roeder’s research is dedicated to advancing sustainable combustion technologies. His key interests lie in:

  • 🔹 Nitrogen oxide reduction strategies

  • 🔹 Biomass combustion efficiency

  • 🔹 Hydrogen transfer reactions

  • 🔹 Carbon capture technologies

He has delivered presentations at major European conferences such as the European Biomass Conference, Kraftwerktechnisches Kolloquium, and the European Conference on Industrial Furnaces and Boilers. He also co-authored a publication in ACS Catalysis (2021) on hydrogenation mechanisms, contributing to green chemistry and catalytic process design.

🏅 Accolades and Recognition

Gabriel’s interdisciplinary expertise and academic rigor have been recognized through:

  • ➤Peer-reviewed journal publication in a high-impact journal (ACS Catalysis)

  • ➤Speaking engagements at international conferences in Austria, Italy, Portugal, and Germany

  • ➤His appointment to leading roles in both academic and industrial energy projects

🌍 Impact and Influence

Fluent in Portuguese, German, English, Spanish, and with a working knowledge of French, Gabriel’s multilingual and multicultural background enhances his collaboration skills across borders. His work contributes directly to the development of cleaner energy solutions, making him a valuable asset to both academic institutions and the power generation industry.

🔮 Legacy and Future Contributions

As he transitions from academia to the energy sector, Mr. Roeder is well-positioned to influence the next generation of low-emission power systems. His combination of experimental skill, financial oversight, and multilingual communication ability sets him apart as a future leader in sustainable energy engineering. With continued focus on innovation and collaborative development, his career promises impactful contributions to the decarbonization of industrial power generation.

Publications


📄  Measurements of NOx emissions from biomass combustion in small to large-scale power plants
Authors: Gabriel J. Roeder, Johannes Haimerl, Yusheng Chen, Matthias Gaderer, Sebastian Fendt, Hartmut Spliethoff
Journal: Fuel
Year: 2025


📄  Selective Heterogeneous Transfer Hydrogenation from Tertiary Amines to Alkynes
Authors: Gabriel J. Roeder, H. Ray Kelly, Guoju Yang, Thomas J. Bauer, Gary Haller, Victor Batista, Eszter Barath
Journal: ACS Catalysis
Year: 2021