Mohammad Mahdavian | Materials Science | Best Researcher Award

Prof. Mohammad Mahdavian | Materials Science | Best Researcher Award

Institute for Color Science and Technology | Iran

Author Profile

Scopus

Orcid

πŸŽ“ Early Academic Pursuits

Prof. Mohammad Mahdavian embarked on his academic journey with a passion for polymer engineering. He earned his Bachelor's, Master's, and Ph.D. from Amirkabir University of Technology, consistently excelling in his studies. His Ph.D. research focused on evaluating azole derivatives as corrosion inhibitors, positioning him as a pioneer in chromate-free protective coatings. His academic excellence was evident in his top-ranking performance, with an impressive GPA of 3.94 in both his postgraduate degrees.

πŸ’Ό Professional Endeavors

With a career spanning academia and industry, Prof. Mahdavian has played a crucial role in advancing polymer coatings and corrosion protection. He currently serves as a Professor at the Institute for Color Science and Technology (ICST), leading the Surface Coatings and Corrosion Department. His previous roles include Assistant and Associate Professorships at ICST and Sahand University of Technology, along with leadership roles in postgraduate education and international scientific collaborations. Parallel to his academic career, he has contributed to industrial innovation as a Coating Scientist at Atlas Protecting Coating (APC) and R&D Deputy at Khosh Paint Company (KPC).

πŸ”¬ Contributions and Research Focus

Prof. Mahdavian’s research is at the forefront of material science, specializing in nano-particles, polymer and silane coatings, conversion coatings, and corrosion-resistant technologies. His expertise extends to electrochemistry, metal-organic frameworks (MOFs), and layered double hydroxides (LDHs). His prolific contributions include over 200 scientific papers in esteemed international journals, solidifying his reputation as a thought leader in protective coatings. His innovative approach has led to multiple patents, including hybrid organic-inorganic corrosion inhibitors and nanocomposite coatings.

πŸ† Accolades and Recognition

Prof. Mahdavian's outstanding contributions to material science have earned him widespread recognition. He has been ranked among the top 2% of scientists globally by Elsevier BV and Stanford University and acknowledged as a top reviewer by Web of Science. His research excellence has been further honored by prestigious awards, including the Distinguished Paper Award from the American Cleaning Institute and the Preeminent Scientist Award from the National Science Foundation of Iran. Additionally, he has been recognized as an Outstanding Researcher by the Ministry of Science and Technology.

🌍 Impact and Influence

Beyond research, Prof. Mahdavian has made a profound impact through mentorship and leadership. He has guided numerous MSc and Ph.D. students, fostering innovation in corrosion protection. As the Head of International Scientific Cooperation at ICST, he has facilitated global research collaborations, further amplifying his influence in the field. His teaching expertise spans various advanced subjects, including corrosion engineering, polymer coatings, and chemical reactor design, shaping the next generation of engineers and researchers.

πŸš€ Legacy and Future Contributions

Prof. Mahdavian’s contributions to polymer engineering and protective coatings continue to shape the future of corrosion-resistant materials. His ongoing research projects, including anti-icing coatings for wind turbines and graphene-based composite coatings, highlight his commitment to industrial innovation and sustainability. With a legacy of scientific excellence, mentorship, and groundbreaking research, he remains a visionary leader poised to drive further advancements in material science and engineering.

 

Publications


πŸ“– Unlocking the Potential of FTIR for Corrosion Inhibition Prediction Exploiting Principal Component Analysis: Machine Learning for QSPR Modeling
Journal: Journal of the Taiwan Institute of Chemical Engineers
Year: 2025
Authors: A. Sadeghi, M. Shariatmadar, S. Amoozadeh, A. Mahmoudi Nahavandi, M. Mahdavian


πŸ“–N-Doped-GO@Zn Nano-Layers Filled Epoxy Composite with Superior Mechanical and Anti-Corrosion Properties
Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Year: 2024
Authors: Motahhare Keramatinia, Bahram Ramezanzadeh, Mohammad Mahdavian


πŸ“–Adiantum Capillus-Veneris Extract as a Sustainable Inhibitor to Mitigate Corrosion in Acid Solutions: Experimental, Machine-Learning Simulation, and Multiobjective Optimization
Journal: Langmuir
Year: 2024
Authors: Mahya Olfatmiri, Mohammad-Bagher Gholivand, Mohammad Mahdavian, Alireza Mahmoudi Nahavandi


πŸ“– Falcaria vulgaris Leaves Extract as an Eco-Friendly Corrosion Inhibitor for Mild Steel in Hydrochloric Acid Media
Journal: Scientific Reports
Year: 2023
Authors: Mohammadreza Alimohammadi, Mohammad Ghaderi, S. A. Ahmad Ramazani, Mohammad Mahdavian


πŸ“– Assessment of Synthesis Conditions on the Corrosion Inhibitive Features of ZIF-67 MOF
Journal: Surface and Coatings Technology
Year: 2023
Authors: D. Aliyari, M. Mahdavian, B. Ramezanzadeh


 

Ying Wei | Materials Science | Best Researcher Award

Dr. Ying Wei | Materials Science | Best Researcher Award

Lanzhou University of Technology | China

Author Profile

Scopus

Orcid

Early Academic Pursuits πŸŽ“

Dr. Ying Wei began her academic journey with a passion for materials science, leading her to pursue advanced studies in this field. She is currently a Ph.D. candidate at the School of Materials Science and Engineering at Lanzhou University of Technology. From early on, her focus has been on the corrosion performance of stainless steel and alloy materials, particularly those used in renewable energy sectors. Her dedication to understanding the behavior of materials in challenging environments has driven her academic pursuits and shaped her research focus.

Professional Endeavors πŸ‘©β€πŸ”¬

Throughout her doctoral research, Dr. Ying Wei has focused on studying the corrosion mechanisms of alloy materials, particularly in solar concentrating power stations. This work is crucial given the increasing role of solar energy as a clean and sustainable power source. Her research investigates how factors such as temperature, pre-oxidation, corrosion inhibitors, humidity, and chemical exposure affect the durability of these materials. She is proficient in using advanced characterization tools such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) to analyze the microstructure of alloys and understand their corrosion resistance.

Contributions and Research Focus πŸ”¬

Dr. Ying Wei’s research is centered around improving the performance of alloy materials in renewable energy applications, with a primary focus on solar power stations. Her contributions lie in advancing the understanding of how different environmental and operational conditions impact the longevity and efficiency of these materials. By identifying key corrosion factors and developing solutions, she aims to enhance the durability of solar power infrastructure, which is essential for the sustainable generation of clean energy.

Accolades and Recognition πŸ…

As an active researcher, Dr. Ying has participated in numerous academic conferences and seminars, where she has presented her findings and engaged with leading experts in the field. Her work has garnered attention for its relevance to the renewable energy sector, and her collaborations with industry partners further underscore the practical implications of her research. Although still in the early stages of her career, Dr. Ying’s work is already contributing to advancements in materials science, and she is well-regarded among her peers.

Impact and Influence 🌍

Dr. Ying Wei’s research on corrosion-resistant alloys has the potential to significantly impact the field of renewable energy. By improving the durability of materials used in solar concentrating power stations, her work supports the long-term sustainability of solar energy as a viable alternative to fossil fuels. Her insights into corrosion mechanisms can lead to more robust and cost-effective solutions, ultimately contributing to a more reliable and efficient solar power industry.

Legacy and Future Contributions 🌱

With a strong foundation in scientific research and a commitment to advancing materials engineering for renewable energy, Dr. Ying Wei is poised to make lasting contributions to her field. Her work in understanding and mitigating corrosion in solar power applications could lead to breakthroughs that enhance the efficiency and longevity of solar energy systems worldwide. As she continues her research, Dr. Ying’s legacy will likely be one of innovation, collaboration, and a significant contribution to the transition toward sustainable energy.

 

Publications


πŸ“ Effect of Mg Addition on Molten Chloride Salt Corrosion Resistance of 310S Stainless Steel with Aluminum

  • πŸ‘¨β€πŸ”¬ Authors: Ying Wei, Junjia Cao, Haicun Yu, Jie Sheng, Peiqing La
  • πŸ“š Journal: Metals
  • πŸ“… Year: 2024

πŸ“ Corrosion Behavior of Aluminum-Forming Alloy 310S for Application in Molten Chloride Salt CSP Thermal Storage Tank

  • πŸ‘¨β€πŸ”¬ Authors: Ying Wei, Peiqing La, Jin Jin, M. Du, Y. Zheng, F. Zhan, J. Sheng, H. Yu, M. Zhu
  • πŸ“š Journal: Frontiers in Materials
  • πŸ“… Year: 2022

πŸ“ Superior Strength and Ductility of 316L Stainless Steel Induced by Micro/Nano/Ultrafine-Grains Multiphase Complex Structures

  • πŸ‘¨β€πŸ”¬ Authors: Ying Wei, Faqi Zhan, Zhengning Li, Yu Shi, Min Zhu, Yuehong Zheng, Jie Sheng, Peiqing La
  • πŸ“š Journal: Materials Science and Engineering: A
  • πŸ“… Year: 2022

πŸ“ Effect of Excess Feβ‚‚O₃ on Microstructure and Tensile Properties of Micro-Nano Structure 316L Austenitic Stainless Steels Prepared by Aluminothermic Method

  • πŸ‘¨β€πŸ”¬ Authors: Y. Zheng, J. Wang, Ying Wei, Peiqing La, M. Yuan, Y. Shi
  • πŸ“š Journal: Rare Metal Materials and Engineering
  • πŸ“… Year: 2021

πŸ“ Effect of Heterogeneous Composite Structure on the Microstructure and Properties for Nanostructured 2205 Duplex Stainless Steel

  • πŸ‘¨β€πŸ”¬ Authors: G. Ma, J. Sheng, Q. Meng, M. Du, Peiqing La, Y. Zheng, Ying Wei, F. Zhan, D. Wu
  • πŸ“š Journal: Integrated Ferroelectrics
  • πŸ“… Year: 2021