Anna Santoro | Biochemistry, Genetics and Molecular Biology | Research Excellence Award

Dr. Anna Santoro | Biochemistry, Genetics and Molecular Biology | Research Excellence Award

Beth Israel Deaconess Medical Center | United States

Dr. Anna Santoro’s research profile reflects a strong and sustained contribution to biomedical and toxicological sciences, with a particular focus on inflammatory pathways, metabolic regulation, environmental toxicants, and neuroendocrine mechanisms. Her scholarly output comprises 28 peer-reviewed documents, which together have received 1,584 citations across 1,472 citing documents, demonstrating broad international impact and cross-disciplinary relevance. With an h-index of 22, her work shows both productivity and consistent citation performance. Key investigations explore the biological effects of non-dioxin-like polychlorinated biphenyls on cellular apoptosis, lipid metabolism, and endocrine signaling, alongside influential studies on palmitoylethanolamide and its protective roles in metabolic disorders, hypertension, renal injury, and neuroinflammation. Her publications in high-impact journals such as Toxicology Letters, Endocrinology, PLoS One, and Journal of Nutritional Biochemistry highlight rigorous experimental approaches and translational relevance, positioning her research as a significant reference point in toxicology, pharmacology, and metabolic disease research.

Citation Metrics (Scopus)

1600

1200

800

400

0

Citations
1,584

h-index
22

Citations

h-index


View Scopus Profile

Featured Publications

Guobin Li | Agricultural and Biological Sciences | Best Researcher Award

Dr. Guobin Li | Agricultural and Biological Sciences | Best Researcher Award

Northwest A&F University | China

Author Profile

Scopus

Orcid

Early Academic Pursuits 📚

Dr. Guobin Li embarked on his academic journey with a strong foundation in agricultural science. He earned his Ph.D. from Huazhong Agricultural University in 2021, focusing on the intricate molecular mechanisms governing plant development. His doctoral research laid the groundwork for his later contributions to horticultural genomics and plant stress physiology.

Professional Endeavors 🎓

Currently serving as an Assistant Professor at Northwest A&F University, Dr. Li is dedicated to unraveling the complexities of tomato fruit development and their responses to environmental stresses. His research delves into temperature and salinity stress tolerance, functional genomics, and the application of biotechnological tools to enhance the resilience of horticultural crops.

Contributions and Research Focus 🔬 

Dr. Li’s work has significantly advanced our understanding of plant molecular responses. His primary research interests include:

  • Investigating the molecular pathways governing tomato fruit development and quality traits.
  • Exploring the genetic and biochemical responses of tomatoes to abiotic stress, including extreme temperatures and salinity.
  • Applying functional genomics and biotechnology to improve crop yield and stress resilience.

His notable studies have identified key regulatory proteins, such as the chloroplast metalloproteinase L2, that influence ethylene-mediated fruit ripening, and DC1 domain proteins that interact with critical regulatory pathways in flower and root development.

Accolades and Recognition 🏆

Dr. Li’s impactful research has been published in prestigious journals, including Journal of Experimental Botany, New Phytologist, Plant Science, and Environmental and Experimental Botany. His findings on polyamine biosynthesis and ionic homeostasis have provided new insights into improving plant stress tolerance, earning him recognition among plant scientists and biotechnologists.

Impact and Influence 🌍

By bridging molecular biology with practical agricultural applications, Dr. Li’s research contributes to global food security and sustainable agriculture. His studies on stress resilience mechanisms are instrumental in developing climate-resilient tomato varieties, addressing challenges posed by climate change and soil degradation.

Legacy and Future Contributions 🔮

Dr. Li’s future endeavors aim to expand the frontiers of plant biotechnology. His work will continue to shape the understanding of plant-environment interactions, with a vision to develop genetically improved crops that thrive under adverse conditions. His contributions hold immense potential for revolutionizing modern horticulture and ensuring agricultural sustainability in the face of environmental challenges.

Publications


  • 📄SlCHP16 promotes root growth and enhances saline-alkali tolerance of tomato
    Author(s): Zhen Kang, Xiangguang Meng, Zhijun Fang, Chunyu Shang, Rihan Wu, Junhong Zhang, Xiaohui Hu, Guobin Li
    Journal: Environmental and Experimental Botany
    Year: 2024


  • 📄The SlWRKY42–SlMYC2 module synergistically enhances tomato saline–alkali tolerance by activating the jasmonic acid signaling and spermidine biosynthesis pathway
    Author(s): Xiaoyan Liu, Chunyu Shang, Pengyu Duan, Jianyu Yang, Jianbin Wang, Dan Sui, Guo Chen, Xiaojing Li, Guobin Li, Songshen Hu, et al.
    Journal: Journal of Integrative Plant Biology
    Year: 2025


  • 📄Genome-Wide Analysis of the DC1 Domain Protein Gene Family in Tomatoes under Abiotic Stress
    Author(s): Guobin Li, Jiao Dang, Jiaqi Pan, Jingyi Liu, Tieli Peng, Guo Chen, Rongqun Wang, Songshen Hu, Xiaojing Li, Xiaohui Hu
    Journal: International Journal of Molecular Sciences
    Year: 2023


  • 📄SlGH3.15, a member of the GH3 gene family, regulates lateral root development and gravitropism response by modulating auxin homeostasis in tomato
    Author(s): Guobin Li
    Journal: Plant Science
    Year: 2023


  • 📄Over-expression of spermidine synthase 2 (SlSPDS2) in tomato plants improves saline-alkali stress tolerance by increasing endogenous polyamines content to regulate antioxidant enzyme system and ionic homeostasis
    Author(s): Guobin Li
    Journal: Plant Physiology and Biochemistry
    Year: 2022