Qingling Zhao | Computer Science | Research Excellence Award

Prof. Qingling Zhao | Computer Science | Research Excellence Award

Nanjing University of Science and Technology | China

Prof. Qingling Zhao is a leading researcher in embedded systems, real-time systems, mixed-criticality scheduling, and intelligent computing, with significant contributions spanning system architecture, cyber–physical systems, and AI-driven embedded intelligence. With an h-index of 12, 26 scholarly documents, and 456 citations across 345 citing publications, the research output demonstrates sustained academic impact. The work covers core areas such as mixed-criticality scheduling theory, resource synchronization, stack memory optimization, AUTOSAR model optimization, and schedulability analysis, alongside recent advances in deep learning, reinforcement learning optimization, network-on-chip systems, intrusion detection, and remote sensing object detection. Publications appear in high-impact venues including ACM Transactions on Embedded Computing Systems, IEEE Transactions, Journal of Systems Architecture, IEEE Access, and major international conferences. Recent research extends classical real-time system theory toward AI-enabled embedded and cyber-secure systems, reflecting a strong integration of theoretical rigor and practical applicability across safety-critical and intelligent computing platforms.

Citation Metrics (Scopus)

500

400

300

200

100

0

Citations
456

h-index
12

Documents
26

Citations

h-index

Documents


View Scopus Profile

Featured Publications

Saraswathy Shamini Gunasekaran | Computer Science | Research Excellence Award

Assoc. Prof. Dr. Saraswathy Shamini Gunasekaran | Computer Science | Research Excellence Award

Taylor's University | Malaysia

Assoc. Prof. Dr. Saraswathy Shamini Gunasekaran is an accomplished researcher and academic specializing in Artificial Intelligence, with a strong focus on agent-based systems, intelligent autonomous systems, machine learning applications, smart energy systems, and climate change–related digital intelligence. Her scholarly impact is reflected in an h-index of 16, with 70 research documents generating 899 citations across international indexing platforms, demonstrating sustained influence in AI-driven and interdisciplinary research domains. Her work spans collective intelligence, knowledge transfer models, data mining, educational technologies, and intelligent digitalization, with publications appearing in IEEE conferences, international journals, and Springer book chapters. In addition to academic publishing, she has led significant intellectual property initiatives, including a granted patent on cooperative control systems for unmanned aerial platforms, utility innovations in autonomous multi-UAV task allocation, and copyrighted micro-credential programs. Her research excellence has been recognized through multiple prestigious awards, including international science communication accolades, industry research honors, and selection for global digital leadership programs. With over two decades of academic engagement and active research contributions, her profile reflects a strong integration of theoretical innovation, applied intelligence systems, and impactful scholarly dissemination across AI, energy, education, and digital transformation domains.

Citation Metrics (Scopus)

1000

800

600

400

200

0

Citations
899

Documents
70

h-index
16

 

Citations

 

Documents

 

h-index


View Scopus Profile

Featured Publications

Exploring the Roles of Agents and Multi-Agent in Improving Mobile Ad Hoc Networks
– International Symposium on Agents, Multi-Agent Systems and Robotics, ISAMSR, 2021

 

Bo Zhang | Computer Science | Research Excellence Award

Assoc. Prof. Dr. Bo Zhang | Computer Science | Research Excellence Award

Northwest Polytechnic University | China

Assoc. Prof. Dr. Bo Zhang is an accomplished researcher whose work spans remote sensing, geospatial intelligence, environmental monitoring, and machine learning–driven Earth observation analytics. With 252 citations,  an h-index of 7, and 5, i10-index publications, his scholarly contributions demonstrate a growing and impactful presence in environmental data science. His research advances high-resolution satellite image processing, atmospheric pollutant estimation, digital elevation model reconstruction, and intelligent geospatial mapping. He has produced notable work on transfer learning–enhanced remote sensing, sparse-sample super-resolution mapping, neural-network–based PMx estimation, land surface temperature retrieval, and ozone concentration modeling. His publications in leading journals such as IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Science Bulletin, Remote Sensing, and Indoor and Built Environment highlight his expertise in integrating artificial intelligence with satellite observations to address environmental challenges. His research also contributes to epidemiological spatial analysis and geospatial data fusion, offering multidisciplinary value in Earth system science. Through continuous work on novel algorithms and high-fidelity environmental datasets, he has strengthened the scientific foundation for climate monitoring, pollution assessment, and large-scale geospatial modeling, positioning him as a significant contributor to advanced remote sensing and environmental informatics.

Profile : Scopus | Orcid | Google Scholar

Featured Publications

Yang, C., Zhang, B., Zhang, M., Wang, Q., & Zhu, P. (2025). Research on decision-making strategies for multi-agent UAVs in island missions based on Rainbow Fusion MADDPG algorithm. Drones, 9(10), 673.

Zhang, B., Shi, Z., Hong, D., Wang, Q., Yang, J., Ren, H., & Zhang, M. (2025). Super-resolution reconstruction of the 1 arc-second Australian coastal DEM dataset. Geo-Spatial Information Science, 1–21.


Zhang, B., Xiong, W., Ma, M., Wang, M., Wang, D., Huang, X., Yu, L., Zhang, Q., & others. (2022). Super-resolution reconstruction of a 3 arc-second global DEM dataset. Science Bulletin, 67(24), 2526–2530.


Pan, D., Zhang, M., & Zhang, B. (2021). A generic FCN-based approach for road-network extraction from VHR remote sensing images using OpenStreetMap as benchmarks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.


Zhang, B., Zhang, M., Kang, J., Hong, D., Xu, J., & Zhu, X. (2019). Estimation of PMx concentrations from Landsat 8 OLI images based on a multilayer perceptron neural network. Remote Sensing, 11(6), 646.


Zhu, B., Liu, J., Fu, Y., Zhang, B., & Mao, Y. (2018). Spatio-temporal epidemiology of viral hepatitis in China (2003–2015): Implications for prevention and control policies. International Journal of Environmental Research and Public Health, 15(4), 661.

Patruni Rajshekhar Rao | Computer Science | Best Researcher Award

Mr. Patruni Rajshekhar Rao | Computer Science | Best Researcher Award

FTD Infocom Pvt Ltd | India

Mr. Patruni Rajshekhar Rao is an avionics research professional whose work integrates test and verification engineering, data analysis, and safety-critical system evaluation across aerospace platforms. His contributions span functional RTL verification, aerospace data analysis, and reliability assessment of embedded systems. His early work involved functional verification of ARINC818 protocol IP cores, where he designed assertion-based test benches using VHDL and file-driven debugging to enhance precision in timing-sensitive validation. He later expanded into flight data analysis for advanced aircraft systems such as the SARAS platform, performing hardware–software integration testing, developing low-level test cases, and analyzing stall-warning system performance. His research also includes pioneering efforts in software health management, where he explored self-healing software systems using AI-driven methods to automate fault detection and recovery in avionics architectures. He has contributed to safety-critical processes aligned with DO-178B and DO-254 standards, including MCDC-level testing for auto-generated code in A-FADEC systems and performing dynamic and static analysis to identify and mitigate software defects. Across conferences and journals, he has published studies on verification methodologies, safety criteria, IP-core validation procedures, and AI-based static analysis, reinforcing his role in advancing dependable avionics engineering.

Profile : Scopus

Featured Publications

Nanda, M., & Rao, P. R. (2018, May 17). Implementation and verification of an asynchronous FIFO under boundary conditions (Paper ID: NCESC18-181). National Conference on Electronics, Signals and Communication (NCESC-2018), GSSS Institute of Engineering & Technology for Women, Mysore.

Nanda, M., Jayanthi, J., & Rao, P. R. (2018, May 18–19). Aerospace compliant test bench to verify critical aerospace functionalities (Paper ID: CRP18-1007). 3rd International Conference on Recent Trends in Electronics, Information and Communication Technology (RTEICT-2018), Department of Electronics and Communication Engineering, SVCE, Bangalore.

Nanda, M., & Rao, P. R. (2018). An approach for generating self-checking test bench. International Journal for Research in Applied Science and Engineering Technology, 6(6). (Paper ID: IJRASET17914).

Nanda, M., & Rao, P. R. (2018). Aerospace data bus safety criteria as per DO-254. International Journal of Research and Innovation in Applied Science, 3(6).

Nanda, M., & Rao, P. R. (2018). A procedure to verify and validate an FPGA level testing as per DO-254. International Journal of Research and Innovation in Applied Science, 3(6).

Nanda, M., & Rao, P. R. (2018). Verification cases and procedure for IP-core development. International Journal of Engineering Research and Advanced Technology. (ISSN 2454-6135).

Diogo Santiago | Computer Science | Best Researcher Award

Mr. Diogo Santiago | Computer Science | Best Researcher Award

Oracle | Brazil

Mr. Diogo Santiago is a highly accomplished technology professional with extensive experience spanning software engineering, big data, and artificial intelligence. Beginning his career in 2009 as a software engineer developing major e-commerce platforms in Brazil, he transitioned into data engineering and science, mastering technologies like Hadoop, Spark, Hive, and Sqoop for large-scale data processing and migration. Since 2018, he has specialized in data science and AI, contributing to diverse projects in computer vision, anomaly detection, logistics optimization, and generative AI, including GAN and diffusion model applications for virtual try-on systems. As an AI Architect at Oracle for LATAM, he designs advanced AI architectures, supports clients with resource planning, and enhances model deployment efficiency through GPU optimization and large language model serving using vLLM and SGLang. His prior roles at Lambda3, Tivit, and Qintess involved developing ML models, data pipelines, and automation systems using cloud technologies such as GCP, AWS, and OCI. With multiple postgraduate qualifications in Big Data and Machine Learning for Finance, along with a Master’s in Medical Texture Imaging, he exemplifies innovation and leadership in merging AI research with scalable enterprise solutions.

Profile : Orcid

Featured Publication

Adorno, P. L. V., Jasenovski, I. M., Santiago, D. F. D. M., & Bergamasco, L. (2023, May 29). Automatic detection of people with reduced mobility using YOLOv5 and data reduction strategy. Conference paper.

 

Yaqin Wu | Computer Science | Excellence in Research Award

Ms. Yaqin Wu | Computer Science | Excellence in Research Award

Shanxi Agricultural University | China

Ms. Yaqin Wu is an accomplished researcher and educator specializing in acoustic signal analysis, deep learning, and multimodal information fusion, with a research record reflecting 80 citations across 78 documents, 9 publications, and an h-index of 3. She holds a Master of Engineering in Electronic and Communication Engineering from Tianjin University and a Bachelor’s degree in Communication Engineering from Dalian Maritime University. Currently serving as a full-time faculty member at the School of Software, Shanxi Agricultural University, she teaches courses such as Speech Signal Processing, Natural Language Processing, and Human-Computer Interaction. Ms. Wu has led and contributed to several cutting-edge research projects, including pathological voice restoration, multimodal animal behavior monitoring, and AVS audio codec development. She has authored multiple SCI-indexed papers and holds several patents and software copyrights related to voice signal processing. Her technical proficiency spans Python, MATLAB, Linux systems, and MySQL databases. Notably, her master’s thesis earned the Outstanding Achievement Award of Engineering Master’s Practice from Tianjin University. Through her innovative contributions in signal processing and intelligent systems, Ms. Wu continues to advance the intersection of engineering and artificial intelligence research.

Profiles : Scopus | Orcid

Featured Publications

Zhang, J., Wu, Y., & Zhang, T. (2025). Fusing time-frequency heterogeneous features with cross-attention mechanism for pathological voice detection. Journal of Voice. Advance online publication.

Li, X., Wang, K., Chang, Y., Wu, Y., & Liu, J. (2025). Combining Kronecker-basis-representation tensor decomposition and total variational constraint for spectral computed tomography reconstruction. Photonics, 12(5), 492.

Victor R.L. Shen | Computer Science | Best Researcher Award

Prof. Dr. Victor R.L. Shen | Computer Science | Best Researcher Award

National Taipei University | Taiwan

Prof. Dr. Victor R. L. Shen is a highly accomplished scholar and Professor Emeritus in the Department of Computer Science and Information Engineering at National Taipei University, Taiwan. With an extensive academic background, including a Ph.D. in Computer Science from National Taiwan University, he has dedicated decades to advancing research and education in artificial intelligence, Petri net theory, fuzzy logic, cryptography, e-learning systems, IoT, and intelligent computing. Over his distinguished career, he has published 78 documents that collectively received 840 citations across 696 sources, earning him an h-index of 15, reflecting both the depth and impact of his contributions. Beyond his prolific research, Prof. Shen has held prominent academic leadership positions, including Dean, Chairman, and CEO roles at National Taipei University and Ming Chi University of Technology, shaping academic programs and fostering innovation. His global recognition includes visiting professorships, membership in leading professional organizations such as IEEE, ACM, and IET, and numerous prestigious awards for teaching, research, and innovation. With sustained contributions in smart systems, advanced computing, and AI-driven education, Prof. Shen continues to influence the global academic community, leaving a legacy of excellence in both research and pedagogy.

Profiles : Scopus | Orcid

Featured Publications

Yang, C.-Y., Lin, Y.-N., Shen, V. R. L., Shen, F. H. C., & Lin, Y.-C. (2025). Petri net modeling and analysis of an IoT-enabled system for real-time monitoring of eggplants. Systems Engineering.

Yang, C.-Y., Lin, Y.-N., Shen, V. R. L., Shen, F. H. C., & Jheng, W.-S. (2025). A novel IoT-enabled system for real-time monitoring home appliances using Petri nets. IEEE Canadian Journal of Electrical and Computer Engineering.

Chang, J.-C., Chen, S.-A., & Shen, V. R. L. (2024). Smart bird identification system based on a hybrid approach: Petri nets, convolutional neural and deep residual networks. Multimedia Tools and Applications, 83(12), 34795–34823.

Yang, C.-Y., Lin, Y.-N., Shen, V. R. L., Tung, Y.-C., & Lin, J.-F. (2024). A novel IoT-enabled system for real-time face mask recognition based on Petri nets. IEEE Internet of Things Journal, 11(4), 6992–7001.

Yang, C.-Y., Lin, Y.-N., Wang, S.-K., Shen, V. R. L., & Lin, Y.-C. (2024). An edge computing system for fast image recognition based on convolutional neural network and Petri net model. Multimedia Tools and Applications, 83(5), 12849–12873.

Yang, C.-Y., Hwang, M.-S., Tseng, Y.-W., Yang, C.-C., & Shen, V. R. L. (2024). Advancing financial forecasts: Stock price prediction based on time series and machine learning techniques. Applied Artificial Intelligence, 38(1), 1–24.

Lin, Y.-N., Wang, S.-K., Chiou, G.-J., Yang, C.-Y., Shen, V. R. L., & Su, Z. Y. (2023). Development and verification of an IoT-enabled air quality monitoring system based on Petri nets. Wireless Personal Communications, 131(1), 63–87.*

 

Vaggelis Lamprou | Computer Science | Best Researcher Award

Mr. Vaggelis Lamprou | Computer Science | Best Researcher Award

National Technical University of Athens | Greece

Author Profile

Scopus

Orcid

Google Scholar 

Early Academic Pursuits

Mr. Vaggelis Lamprou began his academic journey with a strong foundation in mathematics, earning his Bachelor’s degree from the National and Kapodistrian University of Athens, where he developed a deep interest in calculus, probability theory, and statistics. His passion for analytical reasoning and theoretical problem-solving led him to pursue a Master’s degree in Mathematics at the University of Bonn, Germany, where he focused on probability theory and its applications, culminating in a thesis on large deviations in mean field theory. This early academic phase not only honed his mathematical rigor but also laid the groundwork for his transition into the emerging domains of artificial intelligence and machine learning.

Professional Endeavors

Building upon his academic background, Mr. Lamprou advanced into roles that blended research with real-world applications. As a Data Analyst at Harbor Lab, he utilized statistical and computational tools to optimize platform usability and collaborated in developing innovative cost estimation tools for the maritime industry. His transition into machine learning engineering at Infili Technologies SA and later at the DSS Lab, EPU-NTUA, marked a shift toward high-impact AI-driven research and development, particularly within European-funded projects focusing on federated learning, generative AI, anomaly detection, and privacy-preserving technologies.

Contributions and Research Focus

Mr. Lamprou’s research is rooted in the intersection of mathematics, computer science, and artificial intelligence, with a strong emphasis on interpretable AI, deep learning, and probabilistic modeling. His work spans applications in medical imaging, cybersecurity, and large-scale distributed learning systems. In his Master’s thesis in Artificial Intelligence, he explored the evaluation of interpretability methods for deep learning models in medical imaging, underlining his dedication to developing transparent and trustworthy AI solutions. His contributions also extend to federated learning frameworks, enhancing data security and performance in next-generation communication networks.

Publications and Scholarly Engagement

His scholarly output reflects a commitment to both theoretical innovation and practical problem-solving. Notable works include a study on interpretability in deep learning for medical images published in Computer Methods and Programs in Biomedicine, and a comprehensive survey on federated learning for cybersecurity and trustworthiness in 5G and 6G networks in the IEEE Open Journal of the Communications Society. He actively participates in academic discourse, presenting at international conferences such as the International Conference on Information Intelligence Systems and Applications, further contributing to the global exchange of ideas in AI research.

Accolades and Recognition

Mr. Lamprou’s academic excellence is evident in his high academic distinctions throughout his studies, including top GPAs in his advanced degrees. His recognition extends beyond academic grades, with his selection to contribute to high-profile European R&D initiatives—a testament to his expertise and reliability in cutting-edge technological research. His invited participation in prestigious conferences and collaborations with leading research institutions reflects the respect he commands within the AI and machine learning community.

Impact and Influence

Through his research and professional activities, Mr. Lamprou has contributed to advancing AI methodologies in fields of societal importance, such as healthcare and cybersecurity. His work in interpretable AI has the potential to bridge the gap between complex machine learning models and human understanding, fostering trust in AI-assisted decision-making. In the realm of federated learning, his contributions support data sovereignty and privacy, addressing critical challenges in the deployment of AI at scale across sensitive domains.

Legacy and Future Contributions

As a PhD candidate at the National Technical University of Athens, Mr. Lamprou is poised to further deepen his contributions to the AI research landscape. His ongoing work aims to push the boundaries of interpretable and probabilistic AI models, with a vision to create transparent, reliable, and secure machine learning systems. His trajectory suggests a lasting influence on both the academic and industrial sectors, with the potential to inspire future researchers to prioritize ethical and explainable AI solutions.

Publications


Article: Federated Learning for Enhanced Cybersecurity and Trustworthiness in 5G and 6G Networks: A Comprehensive Survey
Authors: Afroditi Blika, Stefanos Palmos, George Doukas, Vangelis Lamprou, Sotiris Pelekis, Michael Kontoulis, Christos Ntanos, Dimitris Askounis
Journal: IEEE Open Journal of the Communications Society
Year: 2025


Article: On the trustworthiness of federated learning models for 5G network intrusion detection under heterogeneous data
Authors: Vangelis Lamprou, George Doukas, Christos Ntanos, Dimitris Askounis
Journal: Computer Networks
Year: 2025


Article: Data analytics for research on complex brain disorders
Authors: Michail Kontoulis, George Doukas, Theodosios Pountridis, Loukas Ilias, George Ladikos, Vaggelis Lamrpou, Kostantinos Alexakis, Dimitris Askounis, Christos Ntanos
Journal: Open Research Europe
Year: 2024


Article: On the evaluation of deep learning interpretability methods for medical images under the scope of faithfulness
Authors: Vangelis Lamprou, Athanasios Kallipolitis, Ilias Maglogiannis
Journal: Computer Methods and Programs in Biomedicine
Year: 2024


Article: Grad-CAM vs HiResCAM: A comparative study via quantitative evaluation metrics
Author: Vaggelis Lamprou
Institution: University of Piraeus
Year: 2023


Conclusion

With his blend of theoretical insight, technical skill, and a forward-looking research vision, Mr. Lamprou stands out as a promising researcher whose work is set to have a significant impact on the development of transparent and reliable AI technologies. His career embodies the bridge between rigorous academic inquiry and impactful, real-world AI solutions.

Hafiz Mohammad Hasan Babu | Computer Science | Lifetime Achievement in Books Award

Prof. Hafiz Mohammad Hasan Babu | Computer Science | Lifetime Achievement in Books Award

University of Dhaka | Bangladesh

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Prof. Hafiz Mohammad Hasan Babu began his academic journey in the realm of computer science and engineering with a strong foundation from the Brno University of Technology, Czech Republic, where he completed his M.Sc. with a focus on logic network automation. His curiosity for advanced computational systems took him to the Kyushu Institute of Technology in Japan, where he earned his Ph.D. in Computer Science and Electronics. His doctoral work concentrated on data structures for multiple-output functions and their applications in VLSI CAD, under the guidance of Prof. Dr. Tsutomu Sasao. These formative years laid the groundwork for his future innovations in quantum computing, reversible logic, and nanotechnology.

Professional Endeavors

Prof. Hasan Babu's academic career spans several decades and institutions, notably the University of Dhaka, where he served in various capacities, including as professor in the departments of Computer Science and Engineering, and Robotics and Mechatronics Engineering. His early academic roles also included positions at Khulna University. He has been deeply involved in curriculum development, student mentorship, and departmental leadership. Beyond teaching, he also contributed significantly as a research supervisor and played a critical role in developing the academic and research culture of computer science in Bangladesh.

Contributions and Research Focus

A prolific researcher, Prof. Hasan Babu has made groundbreaking contributions in the fields of quantum computing, reversible logic design, DNA computing, and machine learning applications in healthcare and agriculture. His interdisciplinary research integrates electronics, artificial intelligence, and biological systems. His most recent works delve into quantum biocomputing and nanotechnology, as evidenced by his multi-volume publications with Springer Nature and CRC Press. He has also authored numerous peer-reviewed articles on topics such as cardiovascular disease detection using mobile AI, air quality forecasting, and toxic substance identification in fruits through deep learning.

Accolades and Recognition

Prof. Hasan Babu has received numerous prestigious awards recognizing his excellence in research and scholarly contributions. These include the Dhaka University Research Excellence Recognition, the UGC Gold Medal, and the Dr. M. O. Ghani Memorial Gold Medal from the Bangladesh Academy of Sciences. His biography has been featured in “Who's Who in the World, USA.” He has also received international fellowships such as the Japanese Government Scholarship, the DAAD Fellowship from Germany, and a Czechoslovakian Government Scholarship, marking his global academic influence.

Impact and Influence

Throughout his academic life, Prof. Hasan Babu has significantly influenced the fields of computer science, electronics, and artificial intelligence. His innovations in reversible logic and DNA computing have shaped research methodologies and applications in both academia and industry. He has been instrumental in advancing computational methods that address real-world problems, particularly in environmental monitoring, biomedical diagnostics, and agricultural automation. His role as a mentor to doctoral and master’s students further amplifies his impact on the next generation of scholars.

Legacy and Future Contributions

Prof. Hasan Babu’s extensive scholarly contributions, particularly in the emerging domains of quantum AI and biocomputing, position him as a thought leader in futuristic technologies. His upcoming publications promise to offer new paradigms in nanotechnology and molecular-level computing. As he continues to mentor new researchers and expand the boundaries of interdisciplinary science, his legacy will be defined by his relentless pursuit of innovation and his dedication to fostering a globally relevant research ecosystem.

List of Book Publications



Books Published in 2025:

1. Quantum AI Emerging Technologies: Driving Innovation and Shaping the Future of Nanotechnology, Volume I, Springer Nature, Singapore.

2. Quantum AI Emerging Technologies: Driving Innovation and Shaping the Future of Nanotechnology, Volume II, Springer Nature, Singapore.

3. Quantum Biocomputing in Quantum Biology, Volume I, Springer Nature, Singapore.

4. Quantum Biocomputing in Quantum Biology, Volume II, Springer Nature, Singapore.

Book Published in 2024:
5. DNA Logic Design: Computing with DNA, World Scientific Publishing Co Pte Ltd., Singapore.

Books Published in 2023:
6. Multiple-Valued Computing in Quantum Molecular Biology, Volume I, CRC Press, USA.
7. Multiple-Valued Computing in Quantum Molecular Biology, Volume II, CRC Press, USA.

Books Published in 2022:
8. VLSI Circuits and Embedded Systems, CRC Press, USA.
9. Control Engineering Theory and Applications (Co-authored with Md. Jahangir Alam, Guoqing Hu, and Huazhong Xu), CRC Press, USA.

Books Published in 2020:
10. Quantum Computing: A Pathway to Quantum Logic Design, 2nd Edition, IOP Publishers, Bristol, UK.
11. Reversible and DNA Computing, Wiley Publishers, UK.



Journal Publications


Analyzing infant cry to detect birth asphyxia using a hybrid CNN and feature extraction approach
Authors: Samrat Kumar Dey, Khandaker Mohammad Mohi Uddin, Arpita Howlader, Md Mahbubur Rahman, Hafiz Md Hasan Babu, Nitish Biswas, Umme Raihan Siddiqi, Badhan Mazumder
Journal: Neuroscience Informatics (Elsevier)
Year: 2025


Empowering early detection: A web-based machine learning approach for PCOS prediction
Authors: Md. Mahbubur Rahman, Ashikul Islam, Forhadul Islam, Mashruba Zaman, Md Rafiul Islam, Md Shahriar Alam Sakib, Hafiz Md Hasan Babu
Journal: Journal of Informatics in Medicine (Elsevier)
Year: 2024


Computer vision based deep learning approach for toxic and harmful substances detection in fruits
Authors: Abdus Sattar, Md. Asif Mahmud Ridoy, Aloke Kumar Saha, Hafiz Md. Hasan Babu, Mohammad Nurul Huda
Journal: Heliyon (Cell Press)
Year: 2024


A Comprehensive Approach to Detecting Chemical Adulteration in Fruits Using Computer Vision, Deep Learning, and Chemical Sensors
Authors: Abdus Sattar, Md. Asif Mahmud Ridoy, Aloke Kumar Saha, Hafiz Md. Hasan Babu, Mohammad Nurul Huda
Journal: Journal of Intelligent Systems with Applications (Elsevier)
Year: 2024


A Voice assistive mobile application tool to detect cardiovascular disease using machine learning approach
Authors: Khandaker Mohammad Mohi Uddin, Samrat Kumar Dey, Hafiz Md Hasan Babu
Journal: Biomedical Materials & Devices (Springer US)
Year: 2024


Conclusion

Prof. Hafiz Mohammad Hasan Babu embodies the spirit of academic excellence and innovation in computer science. With a career rich in scholarly output, international collaborations, and student mentorship, he has become a beacon of transformative research and a visionary in integrating quantum theory with computational systems. His work continues to influence the scientific community both in Bangladesh and globally, promising continued advancements in technology and applied sciences.

Regner Sabillon  | Computer Science | Best Researcher Award

Prof. Regner Sabillon | Computer Science | Best Researcher Award 

International University of La Rioja | Canada

Author Profile

Scopus

Orcid

Google Scholar

 

Early Academic Pursuits

Prof. Regner Sabillon embarked on a diverse and interdisciplinary academic journey rooted in aviation, computer science, and cybersecurity. He began his academic career with a Bachelor's degree in Computer Science from the Universidad de San Pedro Sula, Honduras. He later completed an MBA from the Universidad Politecnica de Madrid, Spain, with specializations in IT Systems Management and Business Administration. His academic thirst extended to include a Master of Science in Knowledge and Information Society from Universitat Oberta de Catalunya and further certifications from institutions like DeVry Institute of Technology and SAIT in Calgary. Currently, he is a Ph.D. candidate at the Universidad Internacional de La Rioja, Spain, focusing on cybersecurity audit, assurance, and awareness.

Professional Endeavors

Prof. Sabillon's extensive professional career spans over two decades in diverse IT and cybersecurity roles. From his early years as a military aviator to becoming a certified cybersecurity leader, his contributions include IT consulting, cybersecurity management, technical training, and educational leadership. He has held notable roles such as Cybersecurity Lead at SAIT, Bow Valley College, and Columbia College. He has also worked with organizations like Gran Tierra Energy, Tuscany LP, and the United Nations (UNDP) in international ICT consultancy roles. In academia, he currently serves as a lead professor at SAIT and instructor at various Canadian institutions including Athabasca University and Loyalist College.

Contributions and Research Focus

Prof. Sabillon's research spans critical areas of cybersecurity, including governance, digital forensics, cyber law, and cybersecurity awareness. His scholarly work focuses on developing practical models such as the CyberSecurity Audit Model (CSAM 2.0) and the Cybersecurity Awareness Training Model (CATRAM 2.0) aimed at improving organizational cybersecurity posture. He has published extensively in renowned journals and presented at international conferences such as IEEE SysCon, HCII, and CISTI. His current Ph.D. thesis delves into cybersecurity models for improving assurance and organizational resilience.

Accolades and Recognition

Prof. Sabillon has earned multiple prestigious awards including the Instructor Excellence Nominee (2024) at SAIT and the 2009 Outstanding Mentor Award from the Network Professional Association. His book on cybersecurity was ranked #1 by BookAuthority in several categories including Best New Cybersecurity Books. He also received the second-best research paper award at the INCISCOS 2017 conference. His extensive certifications, including C|CISO, CRISC, CGEIT, and ISO 27001 Lead Auditor, further establish his expertise and reputation.

Impact and Influence

Prof. Sabillon's work has significantly shaped the academic and professional landscape of cybersecurity in Canada and beyond. His curriculum development efforts at SAIT have influenced the structure of post-diploma cybersecurity programs, equipping the next generation of IT professionals with critical skills. Through his audit and awareness models, he has strengthened cybersecurity practices in academic and corporate institutions.

Legacy and Future Contributions

Prof. Sabillon continues to build a legacy of excellence in cybersecurity education and practice. With a deep commitment to knowledge sharing, training, and systems improvement, he is poised to contribute further to global cybersecurity standards and education reform. As he completes his Ph.D., his ongoing scholarly work and professional leadership promise lasting contributions to digital safety, governance, and risk management across sectors.

Publications


Cybersecurity Audit, Assurance and Awareness: Cybersecurity Models to Improve the Organizational Cybersecurity Posture
Author: Regner Sabillon
Journal: Unpublished Doctoral Dissertation
Year: 2025


Assessing the Effectiveness of Cyber Domain Controls When Conducting Cybersecurity Audits: Insights from Higher Education Institutions in Canada
Authors: Regner Sabillon, Juan Ramon Bermejo Higuera, Jeimy Cano, Javier Bermejo Higuera, Juan Antonio Sicilia Montalvo
Journal: Electronics
Year: 2024


Planning and Conducting Cybersecurity Audits to Assess the Effectiveness of Controls
Authors: Regner Sabillon, M. Barr
Conference Proceedings: IEEE International Systems Conference (SysCon), Montréal, Québec, Canada
Year: 2024


The Importance of Cybersecurity Awareness Training in the Aviation Industry for Early Detection of Cyberthreats and Vulnerabilities
Authors: Regner Sabillon, Juan Ramon Bermejo Higuera
Conference: HCI International 2023 – Late Breaking Papers
Year: 2023


The Importance of Cybersecurity Awareness Training in the Aviation Industry for Early Detection of Cyberthreats and Vulnerabilities
Author: Regner Sabillon
Conference: 25th International Conference on Human-Computer Interaction (HCII 2023)
Year: 2023


Conclusion

Prof. Regner Sabillon exemplifies academic and professional excellence in cybersecurity. His vast array of qualifications, scholarly contributions, and real-world applications reflect a unique blend of intellect and impact. With a focus on innovation, education, and strategic governance, Prof. Sabillon remains a transformative figure in the realm of computer science and cybersecurity.