Ziang Liu | Engineering | Best Researcher Award

Mr. Ziang Liu | Engineering | Best Researcher Award

Nanjing University | China

Author Profile

Scopus

Orcid

Early Academic Pursuits

Mr. Ziang Liu began his academic journey with distinction at Tianjin University, where he earned his Bachelor of Science in Electronic Engineering. His strong foundation in engineering and mathematics laid the groundwork for advanced research and innovation. Continuing his academic trajectory, he pursued a Master of Science in Electronic Engineering at the prestigious Nanjing University, where he was recognized as an Outstanding Student and awarded the First-class Academic Scholarship.

Professional Endeavors

Ziang has accumulated valuable industry experience through impactful internships. At Meituan Shanghai, he served as an LLMs Evaluation Algorithm Intern, where he designed evaluation schemes and analyzed instruction-following capabilities across large language models such as Qwen, Doubao, ChatGPT 3.5/4, and Llama2-70B.  In another significant role at Alibaba DingTalk in Hangzhou, he worked on the back-end development of Chatmemo, an enterprise AI assistant. There, he implemented knowledge graph subgraph displays and integrated Retrieval-Augmented Generation (RAG), significantly boosting response speed and system performance.

Contributions and Research Focus

Mr. Liu’s core interests revolve around LLMs (Large Language Models), RAG (Retrieval-Augmented Generation), and knowledge graph technologies. He has contributed to the design and optimization of backend systems for intelligent applications in healthcare and enterprise settings. His work on deploying frameworks like Graph RAG and utilizing tools like Redis, MySQL, and Spring Boot has shown practical outcomes in real-world systems, particularly in performance optimization, load balancing, and cache management. His participation in the Nanjing University Intelligent Hospital Project resulted in a custom online medication purchasing system, complete with AI-powered Q&A capabilities and scalable backend infrastructure.

Accolades and Recognition

Ziang Liu’s academic excellence is evident through a remarkable series of accolades earned during both his undergraduate and postgraduate studies. He was honored as the Outstanding Student of Nanjing University in 2023 and received the First-class Academic Scholarship in 2022, recognizing his superior academic performance. His analytical and technical skills were demonstrated through competition achievements, including the Third Prize in the 19th Chinese Graduate Mathematical Modeling Competition (2022) and the Second Prize in the 18th Chinese Electronic Design Competition (2023). Earlier in his academic journey, he was named a Meritorious Winner in the Mathematical Contest in Modeling (MCM) in 2021 and was recognized as an Outstanding Graduate of Tianjin University in 2022. These accomplishments reflect his consistent dedication, innovation, and leadership in engineering and applied mathematics.

Impact and Influence

Ziang Liu’s work has made a tangible impact in both academia and industry. His efforts in improving instruction-following performance in LLMs and optimizing backend systems for enterprise AI applications have proven valuable for real-world implementation. His innovations in intelligent hospital systems demonstrate a commitment to applying advanced AI technologies to enhance societal well-being and operational efficiency.

Legacy and Future Contributions

Poised at the intersection of AI, backend engineering, and applied innovation, Mr. Ziang Liu is emerging as a key contributor to the next generation of AI infrastructure. His hands-on experience with cutting-edge technologies like gRPC, GraphRAG, JWT, and multi-threaded optimization positions him to drive future advancements in AI systems, enterprise platforms, and digital healthcare. With a strong academic record and robust technical expertise, he is well on his way to becoming a leading voice in intelligent systems development.

 

 

Publications


Channel-Dependent Multilayer EEG Time-Frequency Representations Combined with Transfer Learning-Based Deep CNN Framework for Few-Channel MI EEG Classification

Authors: Ziang Liu, Kang Fan, Qin Gu, Yaduan Ruan
Journal: Bioengineering
Year: 2025


Studying Multi-Frequency Multilayer Brain Network via Deep Learning for EEG-Based Epilepsy Detection

Authors: Weidong Dang, Dongmei Lv, Linge Rui, Ziang Liu, Guanrong Chen, Zhongke Gao
Journal: IEEE Sensors Journal
Year: 2021


Elif Keskin Bilgiç | Engineering | Best Researcher Award

Mrs. Elif Keskin Bilgiç | Engineering | Best Researcher Award

Istanbul University -Cerrahpaşa | Turkey

Author Profile

Orcid

Early Academic Pursuits 🎓

Mrs. Elif Keskin Bilgiç's academic journey began with a strong foundation in biology, earning her B.Sc. in Biology from Abant İzzet Baysal University in 2010. She further pursued her passion for biomedical engineering, completing an M.Sc. at Istanbul University in 2016. Her master's thesis focused on investigating the therapeutic effects of innovative biomaterials, such as L-Dopa and Lawsone, in wound healing. This early academic focus laid the groundwork for her expertise in biomedical engineering and clinical applications. In 2024, she completed her Ph.D. in Biomedical Engineering from Istanbul University-Cerrahpaşa, specializing in non-invasive clinical decision support systems for diagnosing gastrointestinal diseases using advanced machine learning methods. 📚

Professional Endeavors 💻

With over a decade of professional experience, Mrs. Bilgiç has made significant contributions as both a researcher and educator. She has taught Cambridge Biology at the A-Level from 2016 to 2024 at the International Gokkusagi School in Istanbul, equipping students with critical knowledge to excel in international examinations. As a researcher at Istanbul University-Cerrahpaşa since 2016, she has pioneered research using transfer learning techniques to detect celiac disease, developing predictive machine learning models to aid in diagnostics. Her work in wound healing and biomaterials during her early career helped shape her innovative approaches in biomedical engineering.

Contributions and Research Focus 🔬

Mrs. Bilgiç's research centers on developing non-invasive clinical decision support systems for diagnosing autoimmune diseases, with a particular focus on celiac disease. Her groundbreaking research involves the use of machine learning models, including transfer learning and deep learning, to diagnose the disease by analyzing facial images and predicting Marsh levels from patient data. This innovative approach merges cutting-edge AI technology with clinical diagnostics, advancing the field of medical science. In addition, her research on the therapeutic effects of biomaterials in wound healing has expanded the knowledge base in biomedical engineering.

Accolades and Recognition 🏆

Mrs. Bilgiç has published multiple scientific papers, including an original article on using transfer learning for celiac disease identification, which has garnered attention within the scientific community. Her work has been presented at numerous conferences and symposia, including international venues such as the Bilge Kagan 2nd International Science Congress in Barcelona, Spain, and the 11th Nanoscience and Nanotechnology Conference in Ankara, Turkey. Her innovative approaches to clinical diagnostics and contributions to autoimmune disease research have earned her recognition as a thought leader in the field.

Impact and Influence 🌍

Through her research, Mrs. Bilgiç is reshaping how clinical diagnostics are performed, particularly for gastrointestinal and autoimmune diseases. Her development of non-invasive diagnostic systems could revolutionize patient care, offering faster and more accurate diagnosis options. Her educational impact extends beyond the research lab, as she has inspired countless students through her teaching, blending her academic and professional expertise into practical applications that shape future scientists and researchers.

Legacy and Future Contributions ✨

Mrs. Bilgiç's work in machine learning, biomedical engineering, and education has laid a strong foundation for future advancements in healthcare technology. Her legacy will likely be marked by her innovations in non-invasive diagnostic tools and her contribution to the understanding of biomaterials in medical treatment. As her research evolves, she is poised to continue making significant contributions that will benefit patients and healthcare providers alike, influencing the future of clinical decision support systems and biomedical engineering for years to come.

 

Publications


📖 Innovative Approaches to Clinical Diagnosis: Transfer Learning in Facial Image Classification for Celiac Disease Identification 
Author: Elif Keskin Bilgiç, Inci Zaim Gokbay, Yusuf Kayar
Journal: Applied Sciences
Year: 2024


 

Soopil Kim | Computer Science | Best Researcher Award

Dr. Soopil Kim | Computer Science | Best Researcher Award

Daegu Gyeongbuk Institute of Science and Technology | South Korea

Author Profile

Scopus

Orcid

Early Academic Pursuits 🎓

Dr. Soopil Kim's academic journey began with a Bachelor of Engineering in Robotics and Mechatronics Engineering from Daegu Gyeongbuk Institute of Science & Technology (DGIST), where he graduated Cum Laude. He continued his studies at DGIST, pursuing a Master’s and Ph.D. in the same field, focusing on medical image segmentation. His research during these years emphasized label-efficient segmentation models and limited pixel-level annotation, laying a strong foundation for his future work in deep learning and computer vision.

Professional Endeavors 💼

Dr. Kim's career has seen significant milestones, including a role as a Visiting Student at Stanford University's CNSLAB under the supervision of Prof. Kilian M. Pohl and Ehsan Adeli. Currently, he is a Post-Doctoral Research Fellow at the Medical Image & Signal Processing Lab (MISPL) at DGIST, where he works under Prof. Sang Hyun Park. His professional trajectory reflects a commitment to advancing the field of computer vision through innovative research and collaboration.

Contributions and Research Focus 🔬

Dr. Kim’s research is at the forefront of deep learning and computer vision. His work addresses the challenges of image segmentation with partially labeled datasets by developing federated learning strategies and few-shot segmentation techniques. His notable contributions include the creation of a medical image segmentation model that integrates meta-learning and bi-directional recurrent neural networks, a semi-supervised segmentation model based on uncertainty estimation, and a transductive segmentation model for industrial imaging. These advancements aim to improve the efficiency and accuracy of image segmentation processes.

Accolades and Recognition 🏆

Dr. Kim has received several awards that highlight his exceptional contributions to the field. Notably, he was ranked 3rd among 40 teams in the SNUH Sleep AI Challenge in 2021 and was honored with the Outstanding Student Award from the Department of Robotics and Mechatronics Engineering at DGIST in 2022. In 2024, he was recognized at the KCCV Oral/Poster Presentation Doctoral Colloquium for his work on label-efficient segmentation models.

Impact and Influence 🌍

Dr. Kim's research has made a significant impact on the field of computer vision, particularly in the area of image segmentation. His innovative approaches to handling partially labeled datasets and federated learning have the potential to advance both academic research and practical applications in medical imaging and beyond. His work on few-shot learning and uncertainty-aware models addresses critical challenges in the field, contributing to more robust and adaptable segmentation solutions.

Legacy and Future Contributions 🚀

As Dr. Kim continues his research, his focus on improving segmentation models and developing new methodologies promises to shape the future of computer vision. His commitment to exploring federated learning and few-shot learning techniques will likely drive further innovations in the field, offering solutions to complex challenges and enhancing the accuracy of image analysis across various applications.

 

Publications 📘


📄Few-shot anomaly detection using positive unlabeled learning with cycle consistency and co-occurrence features
Authors: Sion An, Soopil Kim, Philip Chikontwe, Jiwook Jung, Hyejeong Jeon, Jaehong Kim, Sang Hyun Park
Journal: Expert Systems with Applications
Year: 2024


📄Federated learning with knowledge distillation for multi-organ segmentation with partially labeled datasets
Authors: Soopil Kim, Haejun Park, Myeongju Kang, Kilian M. Pohl, Sang Hyun Park
Journal: Medical Image Analysis
Year: 2024


📄FedNN: Federated learning on concept drift data using weight and adaptive group normalizations
Authors: Myeongju Kang, Soopil Kim, Kwang-Hyun Jin, Kilian M. Pohl, Sang Hyun Park
Journal: Pattern Recognition
Year: 2024


📄Few Shot Part Segmentation Reveals Compositional Logic for Industrial Anomaly Detection
Authors: Soopil Kim, Sion An, Philip Chikontwe, Kilian M. Pohl, Sang Hyun Park
Conference: Proceedings of the AAAI Conference on Artificial Intelligence
Year: 2024


📄Uncertainty-aware semi-supervised few shot segmentation
Authors: Soopil Kim, Philip Chikontwe, Sion An, Sang Hyun Park
Journal: Pattern Recognition
Year: 2023