Mamta Tripathi | Chemistry | Best Researcher Award

Dr. Mamta Tripathi | Chemistry | Best Researcher Award

Swami Atmanand Government English Medium School | India

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Mamta Tripathi's journey in academia began with a strong foundation in the sciences. She earned her Bachelor of Science (B.Sc.) degree in Chemistry, Botany, and Biotechnology from G.D. Rungta College of Science & Technology, Bhilai, achieving a notable 70.88% in 2010. Her academic excellence continued with a Master of Science (M.Sc.) in Chemistry from Pt. Ravishankar Shukla University, Raipur, where she graduated with a gold medal in 2012, scoring 74.38%. Dr. Tripathi's passion for research was evident early on, leading her to pursue a Ph.D. in Chemistry at the same university, focusing on the study of Hydroxamic Acid-Metal complexes and their biological properties, which she completed in 2018 under the mentorship of Prof. Rama Pande.

Professional Endeavors

Dr. Tripathi's professional career is marked by a blend of teaching and research roles. From 2013 to 2018, she was an active INSPIRE Research Scholar at Pt. Ravishankar Shukla University, where she worked on her doctoral degree while also engaging in teaching. Following her doctoral studies, she served as a guest lecturer at the same university from 2019 to 2020. Currently, she is a Postgraduate Teacher (PGT) in Chemistry at D.A.V. ISPAT School, Bhilai. In addition to her teaching roles, she has also served as a C.B.S.E. observer in two schools, highlighting her commitment to educational excellence.

Contributions and Research Focus

Dr. Tripathi's research is primarily centered around Chemical Biology, with a particular focus on the interaction of Hydroxamic Acid-Metal complexes with nucleic acids and enzymes. Her thesis, titled “Studies on Hydroxamic Acid Metal Complexes as Nucleic Acid Binder and Enzymatic Inhibitors,” involved pioneering studies on the binding properties of these complexes using various spectroscopic and computational techniques. Her work demonstrated significant findings, such as the minor and major groove binding modes of these complexes with DNA/RNA and their inhibitory effects on enzymes like HDAC 8. Furthermore, she explored the cytotoxicity of these complexes against breast cancer cells, contributing valuable insights to the field of chemical biology and potential therapeutic applications.

Accolades and Recognition

Dr. Tripathi's contributions to science have been recognized through several awards and honors. She was an INSPIRE Fellow, receiving financial assistance from the Department of Science & Technology, New Delhi. She topped the M.Sc. merit list in 2012, earning four gold medals in 2013. Her outstanding research has also earned her the National Young Scientist Award from the Indian Council of Chemists in 2016 and the State Young Scientist Award at the Chhattisgarh Young Scientist Awards in 2017. These accolades reflect her dedication and impact in her field.

Impact and Influence

Dr. Tripathi has made significant contributions to the scientific community through her research publications and conference presentations. She has co-authored numerous research papers published in prestigious journals, covering topics such as DNA binding studies, molecular docking, and the cytotoxicity of metal complexes. Her work has provided valuable insights into the interaction of metal complexes with biological molecules, potentially influencing future research and therapeutic developments.

Legacy and Future Contributions

Dr. Tripathi's legacy in the field of chemical biology is marked by her innovative research and dedication to education. Her findings on Hydroxamic Acid-Metal complexes have paved the way for further studies in nucleic acid binding and enzyme inhibition. As she continues her career, Dr. Tripathi aims to expand her research into new areas and contribute to the development of novel therapeutic agents. Her commitment to education ensures that she will continue to inspire and mentor future generations of scientists.

 

Notable Publications

In-vitro and in-silico analysis and antitumor studies of novel Cu(II) and V(V) complexes of N-p-Tolylbenzohydroxamic acid 2024

Copper(ii) complexes supported by modified azo-based ligands: Nucleic acid binding and molecular docking studies 2022 (1)

N-hydroxypyrazine-2-carboxamide as a new and green corrosion inhibitor for mild steel in acidic medium: experimental, surface morphological and theoretical approach 2022 (16)

In‐vitro investigation of biophysical interactions between Ag(I) complexes of bis (methyl)(thia/selena) salen and ct‐DNA via multi‐spectroscopic, physicochemical and molecular docking methods along with cytotoxicity study 2021 (3)

Spatiotemporal variability and source apportionment of the ionic components of groundwater of a mineral-rich tribal belt in Bastar, India 2020 (21)

 

 

 

 

 

Minakshi Jha | Chemistry | Best Researcher Award

Dr. Minakshi Jha | Chemistry | Best Researcher Award

Homi Bhabha National Institute | India

Author profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Minakshi Jha has demonstrated exceptional dedication to academic excellence from an early stage, culminating in her current position as a Post-doctoral Research Associate at Homi Bhabha National Institute (HBNI), Mumbai. Her academic journey began with a Bachelor's degree in Chemistry, followed by a Master's degree where she achieved first rank in Physical Chemistry. Subsequently, she pursued a Ph.D. in Chemistry from the University of Mumbai, further solidifying her expertise in the field.

Professional Endeavors

Dr. Jha's professional journey is marked by diverse experiences ranging from teaching to research. She has served as an Assistant Professor at Vivekanand Education Society's Institute of Technology, Mumbai, where she imparted knowledge and fostered the academic growth of students. Additionally, her stint as a PGT Chemistry teacher at Kendriya Vidyalaya Mankhurd reflects her commitment to education at various levels.

Contributions and Research Focus

Dr. Jha's research endeavors revolve around the synthesis and characterization of advanced functional nanomaterials with a sustainable, environmentally benign approach. Her major research interests include the design of rare earth-doped upconverting nanophosphors for diverse applications such as optical thermometry and phosphor-based white-light generation. Furthermore, she is deeply involved in the development of theranostic materials for applications in anti-cancer therapy, as well as the fabrication of photocatalysts for clean water technology and environmental applications.

Accolades and Recognition

Dr. Jha's contributions to the field of chemistry have been recognized through various awards and honors. Notably, she has received the "Best Paper Award" at a national conference on recent trends in science and technology and has been bestowed with the University 1st Rank Holder in M.Sc. Additionally, she has been awarded the prestigious University Grant Commission (UGC) Research Fellowship, highlighting her academic prowess and research acumen.

Impact and Influence

Through her extensive research and academic engagements, Dr. Jha has made a significant impact on various domains, including health, energy, sensing, security, environment, and commercial applications. Her innovative approaches to material synthesis and characterization have the potential to address critical challenges in these areas, contributing to the advancement of science and technology.

Legacy and Future Contributions

Dr. Minakshi Jha's legacy lies in her relentless pursuit of knowledge and her commitment to scientific exploration. With a vision to create a vibrant, knowledge-oriented environment conducive to academic excellence, she aims to inspire future generations of scientists and contribute her expertise towards nation-building. Her future contributions are poised to further enrich the fields of chemistry and materials science, driving innovation and sustainable development forward.

Notable Publications

β-NaBiF4:Yb3+,Er3+:Novel green synthesis, crystal structure, upconversion luminescence and optical thermometry 2024

Mechanical response of silver/polyvinyl alcohol thin film: From one-step and cyclic nanoindentation 2022 (5)

Novel sonochemical green approach for synthesis of highly crystalline and thermally stable barium sulphate nanoparticles using Azadirachta indica leaf extract 2019 (6)

Ultrasonic assisted green synthesis of Ag:CdO nanocubes and nanospheres using Citrus limon leaves for efficient degradation of organic dyes 2019 (47)

Green synthesis of zero valent colloidal nanosilver targeting A549 lung cancer cell: In vitro cytotoxicity 2018 (32)

 

 

Dinesh Kumar Chaudhary | Physics and Astronomy | Best Researcher Award

Dr. Dinesh Kumar Chaudhary | Physics and Astronomy | Best Researcher Award

Tribhuvan University | Nepal

Author Profile

Scopus

Orcid

Early Academic Pursuits

Dr. Dinesh Chaudhary commenced his academic journey with a Bachelor's degree in Physics from Tribhuvan University, Kathmandu, Nepal. He proceeded to earn a Master's and eventually a Ph.D. in Physics from the same institution, demonstrating a steadfast commitment to academic excellence from the outset.

Professional Endeavors

Throughout his career, Dr. Chaudhary has been actively engaged in teaching and research at Amrit Campus, Tribhuvan University. He has been imparting knowledge in both undergraduate and postgraduate physics courses since 2004 and 2010, respectively, showcasing his dedication to nurturing future generations of physicists.

Contributions and Research Focus

Dr. Chaudhary's research endeavors span a wide array of topics in the field of physics, with a particular emphasis on materials science and nanotechnology. He has conducted several research projects investigating the electrical, optical, and sensing properties of various semiconductor materials, contributing significantly to the advancement of knowledge in these areas.

Accolades and Recognition

His contributions to the field have been recognized through memberships in esteemed organizations such as the Nepal Physical Society and the IEEE EDS Society. Additionally, his research publications in national and international journals have garnered attention and acclaim from the scientific community, further solidifying his reputation as a prominent figure in his field.

Impact and Influence

Dr. Chaudhary's research has not only expanded the frontiers of scientific knowledge but also holds practical implications in areas such as sensor technology, renewable energy, and nanoelectronics. His work on gas sensors, thin-film technology, and nanomaterials has the potential to address pressing societal challenges and drive innovation in various industries.

Legacy and Future Contributions

As Dr. Chaudhary continues his academic journey, his legacy of scholarly excellence and dedication to research will undoubtedly inspire future generations of physicists. His ongoing efforts to explore new avenues in materials science and nanotechnology promise to yield further insights and innovations, shaping the landscape of physics research for years to come.

Notable Publications

Wide-range ethanol sensor based on a spray-deposited nanostructured ZnO and Sn–doped ZnO films 2024

Structural, mechanical, electronic and optical properties of MgZnO3 perovskite: First-principles study 2023 (2)

Influence of nanoparticle size on the characterization of ZnO thin films for formaldehyde sensing at room temperature 2023 (11)

Mechanism of Imprinting Process in the Ni-P Metallic Glass Films: A Molecular Dynamics Study 2023 (3)

Unsteady Radiative Maxwell Fluid Flow over an Expanding Sheet with Sodium Alginate Water-Based Copper-Graphene Oxide Hybrid Nanomaterial: An Application to Solar Aircraft 2022 (10)

Prescribed Thermal Activity in the Radiative Bidirectional Flow of Magnetized Hybrid Nanofluid: Keller-Box Approach 2022 (13)

Welela Meka | Chemistry | Editorial Board Member

Mr. Welela Meka | Chemistry | Editorial Board Member

Mattu University | Ethiopia

Author Profile

Sopus

Early Academic Pursuits

Welela Meka embarked on her academic journey at Mettu University, Ethiopia, where she earned her BSc degree in Chemistry in 2017 with an outstanding CGPA of 3.91. Her commitment to academic excellence laid the foundation for her future endeavors.

Professional Endeavors

Since 2020, Welela Meka has been serving as a Lecturer in the Department of Chemistry at Mettu University, contributing to the education and development of undergraduate students. Prior to this role, from 2017 to 2018, she gained experience as a Graduate Assistant-I in the same department, showcasing her dedication to academic growth.

Contributions and Research Focus

Welela Meka actively engages in research, with a focus on Organic Chemistry, Polymer Chemistry, Natural Product Chemistry, Material Chemistry/Sciences, Biochemistry, Medicinal Chemistry, Chemical Engineering, and Applied Chemistry. Her diverse research projects encompass topics such as biodiesel production, antioxidant activity of plant extracts, synthesis of novel derivatives, and the application of biopolymers in pharmaceutical and drug delivery.

Accolades and Recognition

Welela Meka's academic journey has been marked by excellence, evident in her CGPA achievements during both her BSc and MSc studies. Her noteworthy contributions to research, along with her commitment to teaching, have earned her recognition within the academic community.

Impact and Influence

As a lecturer and researcher, Welela Meka has a direct impact on the education of future scientists. Her work in various committees, including staff development and curriculum review, reflects her commitment to enhancing educational standards.

Legacy and Future Contributions

Welela Meka's legacy is shaped by her dedication to advancing knowledge in the field of chemistry. Her research outputs, committee involvement, and teaching contributions contribute to the university's academic environment. In the future, she aims to further explore innovative solutions in the realm of chemistry, leaving a lasting impact on the scientific community.

Notable Publications

Optimization and characterization of biodiesel from waste cooking oil using modified CaO catalyst derived from snail shell 2023 (5)

Pharmaceutical and drug delivery applications of pectin and its modified nanocomposites 2022 (23)

Pharmaceutical and drug delivery applications of chitosan biopolymer and its modified nanocomposite: A review 2022 (22)