Girma Sisay Wolde | Materials Science | Best Research Article Award

Dr. Girma Sisay Wolde | Materials Science | Best Research Article Award

National Chung Hsing University | Taiwan

Dr. Girma Sisay Wolde is a distinguished researcher in Materials Science and Engineering with a strong record of scientific contributions, evidenced by 156 citations across 145 documents, 9 key publications, and an h-index of 7. His academic journey includes a Ph.D. in Materials Science and Engineering from National Taiwan University of Science and Technology, an M.Sc. in Inorganic Chemistry from Addis Ababa University, and a B.Sc. in Applied Chemistry from Arba Minch University. Professionally, he has held roles as a postdoctoral researcher at National Chung Hsing University, assistant professor at Bule Hora University, and graduate research assistant at NTUST. His research focuses on photocatalysis, electrocatalysis, and the development of advanced materials for environmental and energy applications, including solar-light-driven ternary MgO/TiO₂/g-C₃N₄ heterojunctions, Zn-Ce-Ga trimetal oxysulfides, and defect-engineered Bi2Mn4O10/BiOI₁₋ₓBrₓ nanosheets. He has contributed to high-impact journals such as Chemosphere, Chemical Engineering Journal, Applied Surface Science, and ACS Applied Energy Materials, with work covering pollutant reduction, nitrogen fixation, and hydrogen evolution. In addition to his research, he has mentored M.Sc. students and guided experiments for high school students, fostering the next generation of scientists. Dr. Wolde’s innovative contributions to materials chemistry, coupled with his extensive publication and citation record, demonstrate both academic excellence and a strong potential for advancing sustainable materials and catalytic technologies.

Profiles : Scopus | Orcid

Featured Publications

Gemeda, T. N., Kuo, D.-H., Ha, Q. N., Gultom, N. S., & Wolde, G. S. (2024). 84.0% energy-efficient nitrate conversion by a defective (Fe, Cu, Ni)₂O₃ electrocatalyst. Journal of Materials Chemistry A.

Huang, T.-C., Chen, X., Wolde, G. S., & Kuo, D.-H. (2024). Photocatalytic hydrogen production over highly oxygen deficient Cu-doped TiO₂ and its composites: Insights of kinetic reaction micromechanisms. Separation and Purification Technology.

Gemeda, T. N., Kuo, D.-H., Wolde, G. S., & Gultom, N. S. (2023). In situ grown (Fe, Mn, Ga)₃O₄₋ₓ spinel/(Mn, Fe)₂O₃₋ᵧ bixbyite dual-phase electrocatalyst for preeminent nitrogen reduction to ammonia: A step toward the NH₃ economy. ACS Applied Energy Materials.

Urgesa, M. H., Wolde, G. S., & Kuo, D.-H. (2023). One-step hydrothermal synthesis of novel flower-like Bi₂Mn₄O₁₀ anchored on BiOI₁₋ₓBrₓ nanosheets for efficient photocatalytic nitrogen fixation. Journal of Alloys and Compounds.

Wolde, G. S., Kuo, D.-H., Urgesa, M. H., & Gemeda, T. N. (2023). Photocatalytic oxidation of benzyl alcohol coupled with p-dinitrobenzene reduction over poly(o-phenylenediamine) nanowires-decorated Gd-TiO₂ nanorods. Chemical Engineering Journal.

Urgesa, M. H., Wolde, G. S., & Kuo, D.-H. (2023). Plasmonic silver nanoparticle-deposited n-Bi₂S₃/p-MnOS diode-type catalyst for enhanced photocatalytic nitrogen fixation: Introducing the defective p-MnOS. Chemical Engineering Journal.

Wolde, G. S., Kuo, D.-H., & Abdullah, H. (2022). Solar-light-driven ternary MgO/TiO₂/g-C₃N₄ heterojunction photocatalyst with surface defects for dinitrobenzene pollutant reduction. Chemosphere.

Sisay, G., Abdullah, H., Kuo, D.-H., Lakew, W., Shuwanto, H., & Fentie, S. (2021). Zn-Ce-Ga trimetal oxysulfide as a dual-functional catalyst: Hydrogen evolution and hydrogenation reactions in a mild condition. Applied Surface Science.

Tadesse, S. F., Kuo, D.-H., Kebede, W. L., & Wolde, G. S. (2021). Visible light driven Nd₂O₃/Mo(S,O)₃₋ₓ·0.34H₂O heterojunction for enhanced photocatalytic degradation of organic pollutants. Applied Surface Science.

Wenbing Li | Materials Science | Best Researcher Award

Assoc Prof Dr. Wenbing Li | Materials Science | Best Researcher Award

Jiangnan University | China

Author Profile

Orcid

Early Academic Pursuits

Wenbing Li embarked on his academic journey with a relentless pursuit of knowledge, earning his Ph.D. from Harbin Institute of Technology in 2019. Under the esteemed guidance of Prof. Jinsong Leng, an Academician of the Chinese Academy of Sciences, Wenbing's academic foundation was solidified. Further enhancing his expertise, he pursued joint doctoral studies at the University of Colorado at Boulder from 2017 to 2018, under the mentorship of Prof. Yifu Ding. This international exposure broadened his horizons and enriched his research perspectives.

Professional Endeavors

In 2019, Wenbing Li joined Jiangnan University, marking the inception of his professional career. As an Associate Researcher in the College of Textile Science and Engineering, he has demonstrated a commitment to excellence in research and academia.

Contributions and Research Focus

Wenbing Li specializes in Shape Memory Composites, particularly focusing on Shape Memory Polymer Composites. His research journey has delved into diverse facets, including chemical structure design, property enhancement, advanced manufacturing, and potential applications. Notably, his contributions extend beyond national borders, with numerous publications in internationally recognized journals.

Accolades and Recognition

Wenbing Li's exceptional contributions have not gone unnoticed. He has been recognized with prestigious awards, exemplifying his commitment to excellence and innovation.

Impact and Influence

With an impressive cumulative impact factor of 66.4 over the last three years, Wenbing Li's work has made a significant mark in the field of Shape Memory Polymer Composites. His research has practical implications, evident in the recently published paper on the use of near-infrared (NIR) in driving shape memory composites.

Legacy and Future Contributions

Wenbing Li's legacy lies in his dedication to advancing the understanding and applications of Shape Memory Polymers. As he continues his journey, his work is poised to shape the future of materials science, leaving an indelible mark on the academic and industrial landscape. His innovative contributions are paving the way for the next generation of researchers and professionals in the field.

Notable Publications

Poly(ethylene-co-vinyl acetate)/Fe3O4 with near-infrared light active shape memory behavior 2024

Shape memory polymer micropatterns with switchable wetting properties 2023 (1)

Ultrathin flexible electrospun EVA nanofiber composite with electrothermally-driven shape memory effect for electromagnetic interference shielding 2022 (24)

Recent advances and perspectives of shape memory polymer fibers 2022 (19)

Application and Development of Shape Memory Micro/Nano Patterns 2021 (13)