Jiawen Xu | Engineering | Best Researcher Award

Assoc Prof Dr. Jiawen Xu | Engineering | Best Researcher Award

Southeast University | China

Author profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits ๐Ÿ“š

Dr. Jiawen Xu's academic journey began with his undergraduate studies at the University of Science and Technology of China, where he pursued a Bachelorโ€™s degree in Precision Machinery and Precision Instrumentation from 2005 to 2009. His interest in advanced engineering led him to continue his studies at the same institution for his Masterโ€™s degree, focusing on the same field under the guidance of Professor Zhihua Feng. Dr. Xu's pursuit of higher knowledge took him to the University of Connecticut, Storrs, where he completed his Ph.D. in Mechanical Engineering in 2017, working under Professor Tang Jiong. His early academic pursuits laid a strong foundation for his research in mechanical piezoelectric metamaterials and structural health monitoring.

Professional Endeavors ๐Ÿ› ๏ธ

Since 2018, Dr. Xu has served as an Associate Professor at the School of Instrument Science and Engineering, Southeast University, Nanjing, China. His professional career is distinguished by his involvement in cutting-edge research and development projects. Dr. Xu has led several key projects funded by national and provincial programs, including research on piezoelectric metamaterials and energy harvesting systems. His role in these projects underscores his expertise in vibration energy harvesting, structural health monitoring, and mechanical metamaterials.

Contributions and Research Focus ๐Ÿ”ฌ

Dr. Xu's research is characterized by his innovative work in mechanical piezoelectric metamaterials and structural health monitoring. His contributions include:

  • Mechanical Piezoelectric Metamaterials: Dr. Xu has developed signal processing methods for studying these materials, designed vibration modes, and explored vibration suspension using differential piezoelectric metamaterials.
  • Piezoelectric Impedance Structural Health Monitoring: His research involves advanced techniques such as tunable inductance enhanced 1D-CNN, deep learning/transformer-based monitoring, and temperature decoupling using piezoelectric impedance.
  • Gravity Wave Detection: Dr. Xu has worked on structural dynamics analysis and key technologies for mechanical differential measurement, utilizing deep learning for signal processing and denoising.
  • Piezoelectric Vibration Energy Harvesting: His work includes broadband energy harvesting, multi-directional harvesting by cantilever-pendulum systems, and enhancing power output density through strain smoothing effects.

Accolades and Recognition ๐Ÿ…

Dr. Xu has been recognized for his contributions to the field of mechanical engineering through various prestigious awards and roles. He is a Fellow of the Jiangsu Instrumental Society and serves as the Deputy Director of the Youth Committee of the Jiangsu Instrumental Society. Additionally, he is an expert reviewer for several high-impact journals, including the IEEE Transactions on Industrial Electronics and the Journal of Applied Physics. His extensive publication record in leading journals further attests to his significant impact in the field.

Impact and Influence ๐ŸŒŸ

Dr. Xu's research has had a profound impact on the fields of mechanical metamaterials and energy harvesting. His work on piezoelectric metamaterials and structural health monitoring has advanced the understanding and application of these technologies in various engineering contexts. His innovative approaches to energy harvesting and structural analysis have contributed to advancements in sustainable and efficient engineering solutions. Dr. Xuโ€™s role as a reviewer and expert in several scientific communities highlights his influence in shaping the future of mechanical engineering research.

Legacy and Future Contributions ๐Ÿ”ฎ

Dr. Xuโ€™s ongoing research and leadership in the field of mechanical engineering continue to shape future advancements. His projects, such as those related to piezoelectric metamaterials and gravity wave detection, promise to push the boundaries of current technology and engineering practices. As he continues to explore new methodologies and applications, Dr. Xu is poised to leave a lasting legacy in the field, influencing both academic research and practical engineering solutions. His dedication to innovative research and his active role in professional societies ensure that his contributions will have a lasting impact on the engineering community.

 

Publications ๐Ÿ“š


  • ๐Ÿ“„ Modeling and Experimental Study of Vibration Energy Harvester with Triple-Frequency-Up Voltage Output by Vibration Mode Switching
    Authors: Jiawen Xu, Zhikang Liu, Wenxing Dai, Ru Zhang, Jianjun Ge
    Journal: Micromachines
    Year: 2024

  • ๐Ÿ“„ Graded metamaterial with broadband active controllability for low-frequency vibration suppression
    Authors: Jian, Y., Hu, G., Tang, L., Huang, D., Aw, K.
    Journal: Journal of Applied Physics
    Year: 2024

  • ๐Ÿ“„ Robustness analysis and prediction of topological edge states in topological elastic waveguides
    Authors: Tong, S., Sun, W., Xu, J., Li, H.
    Journal: Physica Scripta
    Year: 2024

  • ๐Ÿ“„ Deep residual shrinkage network with multichannel VMD inputs for noise reduction of micro-thrust measurement
    Authors: Liu, Z., Chen, X., Xu, J., Zhao, L.
    Journal: AIP Advances
    Year: 2024

  • ๐Ÿ“„ LiteFormer: A Lightweight and Efficient Transformer for Rotating Machine Fault Diagnosis
    Authors: Sun, W., Yan, R., Jin, R., Yang, Y., Chen, Z.
    Journal: IEEE Transactions on Reliability
    Year: 2024

 

Liuxian Zhao | Engineering | Best Researcher Award

Assoc Prof Dr. Liuxian Zhao | Engineering | Best Researcher Award

Hefei University of Technology | China

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Liuxian Zhao's journey in mechanical engineering began with a Bachelor's degree from Tianjin University of Science and Technology, China, in 2008. He then pursued two Master's degrees in Mechanical Engineering: the first in 2011 from Hefei University of Technology, China, focusing on the research of multi-step active disassembly methods, and the second in 2013 from the University of South Carolina, USA, where he explored ultrasound wave-based structural health monitoring. Dr. Zhao completed his Ph.D. in 2018 at the University of Notre Dame, USA, with a thesis on structural tailoring for tomographic damage detection, energy harvesting, and vibration control.

Professional Endeavors

Dr. Zhao's professional career includes significant academic and research positions. From 2015 to 2017, he was a Visiting Scholar at Purdue University, where he worked on frequency selective structures and structural health monitoring using electrical impedance tomography. As a Research Scientist at Nanyang Technological University from 2017 to 2018, he developed micro-/nano-scale porous materials for acoustic and vibrational impact mitigation. He then served as a Postdoctoral Research Associate at the University of Maryland from 2019 to 2022, focusing on structural Luneburg lenses for wave propagation manipulations. Currently, Dr. Zhao is an Associate Professor at Hefei University of Technology, where he explores acoustic metamaterials for enhanced sensing systems.

Contributions and Research Focus

Dr. Zhao's research interests encompass acoustic lenses, metamaterials, metasurfaces, phononic crystals, and acoustic black holes. His work on acoustic metamaterials aims to overcome limitations in detecting weak acoustic signals by enhancing signal-to-noise ratios. He has developed novel sensors and lenses for acoustic applications, contributing significantly to fields such as structural health monitoring, non-destructive testing, and energy harvesting. His research includes pioneering work on acoustic black holes for vibration control and energy harvesting.

Accolades and Recognition

Dr. Zhao's research excellence is reflected in his numerous publications and the prestigious grants he has secured. His work has been funded by notable institutions such as the National Nature Science Foundation of China (NSFC), the United States Department of Agriculture (USDA), and the US National Science Foundation (NSF). He has also served as a reviewer for various high-impact journals, further demonstrating his expertise and influence in the field of mechanical and acoustic engineering.

Impact and Influence

Dr. Zhao's contributions to the field of acoustic engineering have had a profound impact on both theoretical and applied aspects. His innovative approaches to manipulating wave propagation and improving acoustic sensing systems have advanced the capabilities of structural health monitoring and non-destructive evaluation. His work on Luneburg lenses and acoustic metamaterials has set new benchmarks in acoustic wave manipulation, influencing future research and technological developments.

Legacy and Future Contributions

Dr. Zhao's legacy is characterized by his innovative contributions to acoustic metamaterials and their applications. His ongoing research aims to further enhance acoustic sensing systems and explore new avenues in energy harvesting and vibration control. As an active researcher and educator, Dr. Zhao continues to inspire and mentor the next generation of engineers and scientists, ensuring that his pioneering work will have a lasting impact on the field of acoustic engineering.

 

Notable Publications

Super-resolution imaging based on modified Maxwell's fish-eye lens 2024 (1)

Resonant type Luneburg lens for broadband low frequency focusing 2024

Passive directivity detection of acoustic sources based on acoustic Luneburg lens 2023 (1)

Acoustic beam splitter based on acoustic metamaterial Luneburg lens 2023 (5)

A scalable high-porosity wood for sound absorption and thermal insulation 2023 (48)