Mohammed Al Bahri | Materials Science | Best Researcher Award

Dr. Mohammed Al Bahri | Materials Science | Best Researcher Award

A'Sharqiyah University | Oman

Author Profile

Scopus

Orcid

Google Scholar

🎓 Early Academic Pursuits

Dr. Mohammed Al Bahri's academic journey began with a Bachelor’s degree in Physics from the College of Education at Sultan Qaboos University in 1998. He then pursued a Master’s degree in Physics in 2010, where his thesis focused on the "Morphology Dependent Assembly of CuO Nanoparticles." Under the guidance of Prof. Salim Al Harthi, Dr. Al Bahri demonstrated an early interest in nanomaterials. His academic achievements culminated in a Ph.D. in 2018, where he specialized in "Magnetic Nanowires for High Density and Low Power Information Storage" under the mentorship of Prof. Rachid Sbiaa. His Ph.D. work was supported by a full scholarship from the Ministry of Education, further showcasing his potential as a promising researcher.

💼 Professional Endeavors

Dr. Al Bahri's professional career spans over two decades, starting as a Physics teacher in secondary schools in Oman (1998-2001). He later transitioned to leadership roles within the Ministry of Education, such as the Head of the Monitoring Student Achievement Department (2012-2018), where he led a team of assessment officers and contributed to the development of student assessment policies. In academia, he became an Assistant Professor at A'Sharqiyah University in 2018, eventually rising to Associate Professor in 2023. His teaching contributions extend across multiple departments, including Applied and Health Sciences, Engineering, and Education. Additionally, he has played a key role in academic program development, internal reviews, and community engagement.

🧑‍🔬 Contributions and Research Focus

Dr. Al Bahri's research interests are primarily focused on magnetic nanowires, nanodevices, and their applications in information storage. His scholarly work includes publishing 13 articles in reputable journals like the Journal of Magnetism and Magnetic Materials and Nanomaterials. With 126 citations in Google Scholar, his research has had a notable impact on the field of nanotechnology. Dr. Al Bahri’s work often addresses critical issues in magnetic domain walls and storage devices, contributing significantly to advancements in nanodevice technology.

🏆 Accolades and Recognition

Throughout his career, Dr. Al Bahri has received numerous accolades. He was awarded the "Best Physics Teacher" by the Ministry of Education in 2002. More recently, in 2022-2023, he was recognized as the "Best Researcher" at A'Sharqiyah University. His work has garnered international attention, with him being among the top 50 academic researchers in Asia for 2022. He has also received prestigious research awards, including the Best Research Award from the International Research Awards (IIRA-2022) and the New Science Inventions (NESIN) 2020 Awards.

🌍 Impact and Influence

Dr. Al Bahri’s influence extends beyond academia into community service. He has conducted various seminars and workshops for teachers and students, contributing to public education. His leadership in developing academic programs and policies, both at the university and ministry levels, has shaped educational practices in Oman. His research in nanotechnology also offers potential solutions to global challenges in data storage and energy efficiency, reflecting his broad impact.

🏅 Legacy and Future Contributions

As a dedicated educator, researcher, and academic leader, Dr. Al Bahri’s legacy is rooted in his contributions to both physics education and nanotechnology research. His ongoing work in magnetic nanodevices holds promise for future advancements in high-density storage technologies. His role in academic program development and his influence on education policy will likely continue to shape the next generation of Omani scientists and educators.

 

Publications


  • 📖Vortex Domain Wall Thermal Pinning and Depinning in a Constricted Magnetic Nanowire for Storage Memory Nanodevices
    Journal: Nanomaterials
    Authors: Mohammed Al Bahri, Salim Al-Kamiyani, Al Maha Al Habsi
    Year: 2024

  • 📖Thermal Effects on Domain Wall Stability at Magnetic Stepped Nanowire for Nanodevices Storage
    Journal: Nanomaterials
    Authors: Mohammed Al Bahri, Salim Al-Kamiyani
    Year: 2024

  • 📖Chirality‐Dependent Dynamics and Pinning of Transverse Domain Wall in Constricted Nanowires
    Journal: physica status solidi (a)
    Authors: Mohammed Al Bahri, Rachid Sbiaa
    Year: 2024

  • 📖Multi-segmented Nanowires for Vortex Magnetic Domain Wall Racetrack Memory
    Journal: Chinese Physics B
    Authors: M. Al Bahri, M. Al Hinaai, T. Al Harthy
    Year: 2023

  • 📖Noise Measurements in Industrial Areas in North A' Sharqiyah Region - Oman
     Journal: International Journal of Research and Innovation in Applied Science
    Authors: M. Al Bahri
    Year: 2022

 

Kaustab Ghosh | Materials Science | Best Researcher Award

Dr. Kaustab Ghosh | Materials Science | Best Researcher Award

Vellore Institute of Technology | India

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Kaustab Ghosh began his academic journey at Barrackpore Rastragure Surendranath College, affiliated with the University of Calcutta, where he completed his B.Sc in Electronic Science (August 1999 - April 2002). He furthered his studies at the University of Calcutta, earning an M.Sc in Electronic Science (August 2002 - June 2004) and later a PhD in the Department of Electronic Science (August 2005 - April 2009). His PhD research focused on the ultra-purification process of gallium for optoelectronic applications, where he developed a novel gallium purification technology.

Professional Endeavors

Dr. Ghosh's professional career began as an Assistant Professor at the Vellore Institute of Technology (VIT) from May 2011 to August 2012. He then progressed to Associate Professor from September 2012 to May 2021, and has been serving as a Professor since June 2022. His tenure at VIT has been marked by significant research and academic contributions in the fields of nano-optoelectronic materials, devices, and sensors.

Dr. Ghosh has also served as a Post-Doctoral Research Fellow at the Centre for Excellence in Nanoelectronics, Indian Institute of Technology Bombay (April 2009 - April 2011), where he focused on experimental characterization and theoretical modeling of InAs/GaAs quantum dots.

Contributions and Research Focus

Dr. Ghosh has made substantial contributions to the field of nano-optoelectronics. His research interests and contributions include:

  • Graphene Nanoribbon and Carbon Nanotube Sensors: He has worked extensively on the electronic structure computation of graphene nanoribbon and carbon nanotube-based sensors using atomistic modeling by non-equilibrium Green’s function and density functional theory.
  • Nanoscale Sensors and Solar Cells: Developed software products for nanoscale sensors and heterojunction thin film solar cell technology using machine learning. He has also fabricated low-cost Cu2SnS3/ZnS heterojunction solar cells using ultrasonic spray pyrolysis.
  • Quantum Dots for Biomedical Imaging: Engaged in collaborative research for the synthesis and characterization of PbS and CdSe quantum dots for biomedical imaging.
  • Quantum Dot Infrared Photodetectors: Principal investigator for the fabrication and performance optimization of InAs/GaAs quantum dot infrared photodetectors.
  • Nanoscale MOSFETs: Co-PI for projects focusing on first principle calculations of silicon band structure for device modeling and performance analysis of silicon-based nanoscale MOSFETs.

Accolades and Recognition

Dr. Ghosh has been recognized for his innovative work in the field. His project on InAs/GaAs quantum dot infrared photodetectors received a grant of Rs. 2 million from the Department of Science and Technology, Government of India. Another project, co-PIed by him, received a Rs. 4.5 million grant from the Science and Engineering Research Board (SERB), Government of India. He has also served as a Visiting Researcher at CIMAP/ CNRS/CEA/ENSICAEN/Normandie Université, Caen, France.

Impact and Influence

Dr. Ghosh has supervised four PhD students, contributing to the growth of the next generation of researchers in nano-optoelectronics. He has delivered numerous industrial and invited talks, sharing his expertise on water quality purification using nanoscale sensor technology and emerging trends in nanoelectronics for industrial applications.

Legacy and Future Contributions

Dr. Ghosh's work has set a foundation for future advancements in nano-optoelectronics, particularly in the development of quantum dot-based devices and nanoscale sensors. His contributions to the field are documented in numerous high-impact publications and patents, including a patent on graphene nanoribbon field effect transistors. As he continues his research and mentoring at VIT, Dr. Ghosh is poised to make further significant contributions to the advancement of nano-optoelectronics and its applications in various fields.

 

Notable Publications

A machine learning based electronic property predictor of Cu2SnS3 thin film synthesized by ultrasonic spray pyrolysis 2024

Performance analysis of carbon nanotube and graphene nanoribbon based biochemical sensors in atomic scale 2024

Advancement and Challenges of Biosensing Using Field Effect Transistors 2022 (18)

Probing the bandstructure dependent figures of merit in InAs/GaAs quantum dot photodetectors 2022 (1)

Optimization and fabrication of low cost Cu2SnS3/ZnS thin film heterojunction solar cell using ultrasonic spray pyrolysis 2022 (13)