Vaishnavi Krishnamurthi | Materials Science | Women Research Award

Dr. Vaishnavi Krishnamurthi | Materials Science | Women Research Award

RMIT University | Australia

Author Profile

Orcid

Early Academic Pursuits

Dr. Vaishnavi Krishnamurthi pursued an illustrious academic journey, culminating in a Ph.D. in Material Science from RMIT University. With an M.Sc. from the University of Southampton and a B.Sc. from Anna University Coimbatore, her early academic pursuits laid a solid foundation for her research endeavors.

Professional Endeavors

Dr. Vaishnavi Krishnamurthi embarked on her professional journey as a Short-Term Visiting Scholar at Northwestern University and later held research positions at RMIT University, focusing on materials research in various capacities, including liquid metals and low-dimensional materials for neuromorphic applications.

Contributions and Research Focus

Her research focuses on materials at the nanoscale, with a specialization in liquid metals. She has expertise in synthesis, characterization, fabrication, and testing of functional materials. Dr. Vaishnavi Krishnamurthi's current research explores the fundamental aspects of liquid metals and their suitability for practical applications.

Accolades and Recognition

Dr. Vaishnavi Krishnamurthi's contributions have been recognized through numerous awards and achievements, including scholarships, university rankings, and accolades for research presentations. She has also secured grants and industry income for her research projects.

Impact and Influence

With a significant number of citations, publications, and a notable H-index, Dr. Vaishnavi Krishnamurthi's research has made a considerable impact in the field of material science. Her patents and supervisory roles underscore her influence and leadership in academia.

Legacy and Future Contributions

Dr. Vaishnavi Krishnamurthi's legacy lies in her pioneering research in material science, particularly in advancing the understanding and application of liquid metals. Her future contributions are poised to further enrich the field, driven by her expertise, dedication, and commitment to innovation.

Notable Publications

2‐nm‐Thick Indium Oxide Featuring High Mobility 2023 (3)

Atomically Thin Synaptic Devices for Optoelectronic Neuromorphic Vision 2023 (3)

Doped 2D SnS Materials Derived from Liquid Metal Solution for Tunable Optoelectronic Devices 2022 (16)

Soft X‐ray Detectors Based on SnS Nanosheets for the Water Window Region 2021 (10)

Black Phosphorus Nanoflakes Vertically Stacked on MoS 2 Nanoflakes as Heterostructures for Photodetection 2021 (13)

 

 

Dr. Shi Hyeong KIM | Artificial Muscles | Best Researcher Award

Dr. Shi Hyeong KIM | Materials Science | Best Researcher Award

Korea Institute of Industrial Technology | South Korea

Author Profile

Google Scholar

 

Early Academic Pursuits

Shi Hyeong Kim began his academic journey at Hanyang University, where he pursued a Bachelor's degree in Biomedical Engineering, showcasing a strong interest in this interdisciplinary field. He continued his academic pursuit at the same institution, completing his Master's and Doctoral degrees in Biomedical Engineering, focusing his thesis work on the development of innovative technologies like the conductive tubular bundle for artificial muscle (for his Master's) and environmental-powered artificial muscle for energy harvesting (for his Ph.D.).

Professional Endeavors

Kim's professional journey commenced with postdoctoral positions at various renowned institutions, including Hanyang University, the Nanotech Institute at the University of Texas at Dallas, and the U.S. Army Research Lab. These roles allowed him to further expand his expertise and delve into cutting-edge research within the field of Biomedical Engineering and related areas.

Contributions and Research Focus

Throughout his career, Kim has made significant contributions, emphasizing advancements in biomedical technology, particularly in artificial muscles and energy harvesting from the environment. His research focus has been on developing innovative solutions that bridge the gap between engineering and biology, showcasing the potential for practical applications in various domains.

Accolades and Recognition

Kim's pioneering work has earned him recognition, including potentially awards, patents, or academic distinctions that acknowledge the impact of his contributions to the field of Biomedical Engineering.

Impact and Influence

His research findings and technological innovations have not only contributed to the theoretical advancements in Biomedical Engineering but also have the potential to influence diverse industries, including healthcare, robotics, and sustainable energy, by offering novel solutions and applications.

Legacy and Future Contributions

Kim's legacy is defined by his commitment to pushing the boundaries of Biomedical Engineering and interdisciplinary research. As a Senior Researcher at the Korea Institute of Industrial Technology and an Adjunct Professor at Hanyang University, his current and future contributions are likely to continue inspiring advancements and fostering the next generation of researchers and engineers in this field. Kim's academic journey, coupled with his diverse professional experiences, underscores his significant impact on the field of Biomedical Engineering and signals promising contributions to come in the intersection of engineering and biology.

Notable Publications

High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns 2014 (139)

Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk 2014 (116)

Wearable Energy Generating and Storing Textile Based on Carbon Nanotube Yarns 2020 (40)