Swathi Priyadarshini Tigulla | Computer Science | Best Researcher Award

Dr. Swathi Priyadarshini Tigulla | Computer Science | Best Researcher Award

Osmania University | India

Author Profile

Scopus

Early Academic Pursuits

Dr. Swathi Priyadarshini Tigulla laid the foundation of her academic journey with a degree in Information Technology, followed by a master’s program in Information Technology with a specialization in network security. Her pursuit of advanced knowledge culminated in a doctoral degree in Computer Science and Engineering from Osmania University. From the beginning, she demonstrated a strong inclination toward solving computational problems and a keen interest in the emerging domains of artificial intelligence, machine learning, and network security.

Professional Endeavors

Her professional career reflects an extensive teaching and mentoring journey across reputed institutions. She began her career as an Assistant Professor in engineering colleges where she taught computer science, network security, and software engineering, and guided student projects. Over the years, she progressed to significant academic roles, including serving as Head of the Department, coordinating extracurricular activities, and contributing to student training and placement. Presently, she continues her academic engagement as an Assistant Professor specializing in artificial intelligence and machine learning, while also actively mentoring projects and participating in innovative academic initiatives such as GEN-AI teams and project schools.

Contributions and Research Focus

Dr. Tigulla’s research is strongly anchored in artificial intelligence, machine learning, and soft computing, with a particular focus on healthcare applications such as heart stroke prediction models. Her publications have proposed innovative approaches that integrate clustering, classification, and deep learning techniques to enhance medical predictions, combining accuracy with practical applicability. Beyond healthcare, her work also explores security strategies in cloud computing and data-driven approaches to protect systems from vulnerabilities. This blend of healthcare informatics and cyber security positions her research at the intersection of technology and community impact.

Accolades and Recognition

Her expertise has been recognized through publications in reputed international journals such as Measurement: Sensors and Journal of Positive School Psychology, along with contributions to international conferences under IEEE. She has served as a reviewer for scholarly journals and academic book chapters, demonstrating her standing as a trusted evaluator in her field. Her involvement as an organizer of technical workshops, hackathons, and project expos reflects her commitment to academic innovation and student skill development, further reinforcing her recognition as a versatile academic leader.

Impact and Influence

The impact of Dr. Tigulla’s work is evident in both her research outcomes and her teaching contributions. Her models for heart stroke prediction contribute significantly to community health by combining artificial intelligence with real-world medical applications. As an educator, she has influenced generations of students by equipping them with knowledge in machine learning, artificial intelligence, and advanced computational concepts. Her leadership in academic events has fostered a culture of innovation, creativity, and hands-on learning among students, thereby extending her influence beyond traditional teaching.

Legacy and Future Contributions

Dr. Tigulla’s legacy is one of blending research excellence with community benefit. By focusing on both healthcare prediction models and system security, she has addressed two domains of immense social importance—public health and digital trust. Looking forward, her future contributions are expected to further deepen the integration of artificial intelligence into real-world applications, enhance her role as a reviewer and academic guide, and continue her efforts to shape students into innovative researchers and industry-ready professionals.

Publications


Article: Developing Heart Stroke Prediction Model using Deep Learning with Combination of Fixed Row Initial Centroid Method with Naïve Bayes, Decision Tree, and Artificial Neural Network
Authors: T. Swathi Priyadarshini, Vuppala Sukanya, Mohd Abdul Hameed
Journal: Measurement: Sensors
Year: 2024


Article: Collaboration of Clustering and Classification Techniques for Better Prediction of Severity of Heart Stroke using Deep Learning
Authors: T. Swathi Priyadarshini, Vuppala Sukanya, Mohd Abdul Hameed
Journal: Measurement: Sensors
Year: 2025


Article: Deep Learning Prediction Model for Predicting Heart Stroke using the Combination Sequential Row Method Integrated with Artificial Neural Network
Authors: T. Swathi Priyadarshini, Mohd Abdul Hameed, Balagadde Ssali Robert
Journal: Journal of Positive School Psychology
Year: 2022


Article: Methods of Hidden Pattern Usage in Cloud Computing Security Strategies with K-means Clustering
Authors: T. Swathi Priyadarshini, Dr. S. Ramachandram
Journal: AIJREAS
Year: 2021


Article: A Review on Security Issue Solving Methods in Public and Private Cloud Computing
Authors: T. Swathi Priyadarshini, S. Ramachandram
Journal: IJMTST
Year: 2020


Conclusion

Dr. Swathi Priyadarshini Tigulla embodies the qualities of an academician and researcher who successfully bridges the gap between theoretical advancements and community impact. Her journey, marked by academic rigor, extensive teaching experience, and impactful research, showcases her dedication to advancing artificial intelligence and machine learning for practical applications. Recognized as both a researcher and a mentor, she continues to inspire through her contributions in education, healthcare, and cyber security. In conclusion, her career highlights a sustained commitment to knowledge, innovation, and community-oriented research, establishing her as a distinguished academic voice in the field of computer science and engineering.

 

Rudresh Dwivedi | Computer Science | Best Researcher Award

Assist Prof Dr. Rudresh Dwivedi | Computer Science | Best Researcher Award

Netaji Subhas University of Technology | India

Author Profile

Scopus

Orcid

Early Academic Pursuits

Dr. Rudresh Dwivedi's academic journey began with a Bachelor of Technology in Computer Science & Engineering from ICFAI University, Dehradun, India. He graduated in 2010 with a CGPA of 6.63/10. He then pursued a Master of Technology in Electrical Engineering from the National Institute of Technology (NIT), Raipur, India, graduating in 2013 with a CGPA of 8.63/10. His thesis, supervised by Dr. Narendra D. Londhe, focused on the classification of EEG-based multiclass motor imagery movements. Dr. Dwivedi furthered his academic career with a Ph.D. in Computer Science and Engineering from the Indian Institute of Technology (IIT), Indore, India, completing his doctoral studies in 2019 under the supervision of Dr. Somnath Dey. His Ph.D. thesis titled "Unimodal and Multimodal Biometric Verification Using Cancelable Iris and Fingerprint Templates" earned him a CGPA of 9.25/10.

Professional Endeavors

Dr. Dwivedi's professional career is marked by a blend of academic and industry experiences. His career commenced as a Software Engineer at Mars Web Solution, Bangalore, India, from August 2010 to March 2011. Transitioning to academia, he served as an Assistant Professor at NMIMS University, Maharashtra, India, in 2013. Following this, he was a Research Assistant at IIT Indore for a SERB-DST project focused on efficient cancelable template generation methods for fingerprint and iris biometrics. He then joined Pandit Deendayal Petroleum University (PDPU), Gandhinagar, Gujarat, India, as an Assistant Professor from July 2019 to August 2021. Currently, Dr. Dwivedi is an Assistant Professor in the Computer Science & Engineering Department at Netaji Subhas University of Technology, Dwarka, Delhi, India.

Contributions and Research Focus

Dr. Dwivedi has made significant contributions to the fields of biometrics, machine learning, and computer vision. His research has primarily focused on developing novel approaches for cancelable iris and fingerprint template generation, rotation-invariant iris code generation, and privacy-preserving biometric systems. He has also explored score-level and hybrid fusion schemes for protected multimodal biometric verification and secure communication systems using fingerprint-based cryptographic techniques. Additionally, his work on BCI (Brain-Computer Interface) systems has advanced the classification of EEG signals and the development of motor imagery-based systems.

Accolades and Recognition

Throughout his career, Dr. Dwivedi has received numerous awards and recognitions. These include the Third Prize at the Fifth IDRBT Doctoral Colloquium in 2015, the MHRD TA Fellowship for his Ph.D. studies, a Summer Research Fellowship at IIT Delhi in 2012, and a high percentile in the GATE 2011 exam, which secured him an MHRD TA Fellowship for his M.Tech. studies. He has also been awarded the State Meritorious Student Award and the National Talent Search Examination Scholarship during his early academic years.

Impact and Influence

Dr. Dwivedi's research has had a substantial impact on the field of biometric security, particularly in developing methods for protecting biometric templates. His work on cancelable biometrics and secure communication systems has contributed to enhancing privacy and security in biometric applications. His publications in esteemed journals and conferences have garnered attention and citations, reflecting his influence in the academic community.

Legacy and Future Contributions

Dr. Dwivedi's legacy is marked by his innovative contributions to biometric security and machine learning. His ongoing research continues to push the boundaries of these fields, promising further advancements in secure biometric systems and AI-based solutions. As a dedicated educator and researcher, Dr. Dwivedi's future contributions are anticipated to significantly impact both academia and industry, fostering the development of more secure and efficient biometric technologies.

 

Notable Publications

An efficient ensemble explainable AI (XAI) approach for morphed face detection 2024

Explainable AI (XAI): Core Ideas, Techniques and Solutions 2022 (161)

A Leaf Disease Detection Mechanism Based on L1-Norm Minimization Extreme Learning Machine 2021 (10)

A fingerprint based crypto-biometric system for secure communication 2019 (20)

Score-level fusion for cancelable multi-biometric verification 2019 (25)