Xin Wang | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Xin Wang | Chemistry | Best Researcher Award

Zhengzhou University | China

Assoc. Prof. Dr. Xin Wang is an accomplished researcher in the field of chemistry and nanomaterials, with a strong focus on advanced energy storage and conversion systems. His research spans lithium-ion and lithium-sulfur batteries, metal-air batteries, supercapacitors, fuel cells, electrocatalysis, CO₂ reduction, and solar cells. Over the years, he has made significant contributions to the controllable synthesis of alloy-based nanomaterials, the development of high-entropy alloys, and the application of innovative catalysts for electrochemical CO₂ conversion and energy storage. His academic output is substantial, with 52 documents published, garnering 4,164 citations overall (3,400 since 2020), reflecting his consistent influence in the scientific community. He holds an h-index of 32 (30 since 2020) and an i10-index of 52, showcasing both the depth and breadth of his impactful work. His publications in high-impact journals, including Nature Communications, Journal of the American Chemical Society, Advanced Functional Materials, and Journal of Materials Chemistry A, underscore his role as a leading scientist in sustainable energy research. Recognized with multiple awards, fellowships, and competitive research grants, he continues to drive innovation in nanomaterials, electrocatalysis, and green energy technologies, shaping future directions in electrochemistry and materials science.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

Cai, M., Dong, Y., Xie, M., Dong, W., Dong, C., Dai, P., Zhang, H., Wang, X., Sun, X., Zhang, S., Yoon, M., Xu, H., Ge, Y., Li, J., & Huang, F. (2023). Stalling oxygen evolution in high-voltage cathodes by lanthurization. Nature Energy, 8(2), 159–168.

Fan, H., Si, Y., Zhang, Y., Zhu, F., Wang, X., & Fu, Y. (2024). Grapevine-like high entropy oxide composites boost high performance lithium sulfur batteries as bifunctional interlayers. Green Energy & Environment, 9(3), 565–572.

Wang, X., Miao, M., Tang, B., Duan, H., Zhu, F., Zhang, H., Zhang, X., Yin, W., & Fu, Y. (2023). Chlorine-induced mixed valence of CuOx/C to promote the electroreduction of carbon dioxide to ethylene. Nano Research, 16(20), 8827–8835.

Zhang, Y., Yu, Q., Wang, X., & Guo, W. (2023). Conversion of nitrogenous small molecules into value-added chemicals by building N–C bonds. Chemical Engineering Journal, 474, 145899.

Chai, D., Yan, H., Wang, X., Li, X., & Fu, Y. (2024). Retuning solvating ability of ether solvent by anion chemistry toward 4.5 V class Li metal battery. Advanced Functional Materials, 34(23), 2310516.

Yang, W., Xu, T., Fan, H., Yang, C., Sun, W., Ma, X., Wang, X., & Fu, Y. (2024). Selective and bifunctional catalytic electrochemical conversion of organosulfide molecule by high-entropy carbides. Advanced Functional Materials, 34(24), 2409450.

Wang, X., Li, W., Lv, X., & Broekmann, P. (2024). When chiral chemistry meets electrochemistry: A virgin land of an academic gold mine. Matter, 7(10), 2626–2788.

Cao, M., Li, W., Li, T., Zhu, F., & Wang, X. (2024). Polymetallic amorphous materials: Research progress in synthetic strategies and electrocatalytic applications. Journal of Materials Chemistry A, 12(30), 15541–15557.

Cui, T., Xu, J., Wang, X., Liu, L., Xiang, Y., Zhu, H., Li, X., & Fu, Y. (2024). Highly reversible transition metal migration in superstructure-free Li-rich oxide boosting voltage stability and redox symmetry. Nature Communications, 15, 4742.

Duan, H., Li, W., Ran, L., Zhu, F., Li, T., Miao, M., Yin, W., Wang, X., & Fu, Y. (2024). In-situ electrochemical interface of Cu@Ag/C towards the ethylene electrosynthesis with adequate *CO supply. Journal of Energy Chemistry, 99, 292–299.

Ma, X., Zhang, Y., Yang, W., Liu, C., Wang, X., & Fu, Y. (2025). Defect-engineered NbSx as an efficient cathode host for high-performance Li–organosulfur batteries. ChemSusChem. Advance online publication. e202500983.

Cao, M., Miao, H., Li, J., Liu, C., Wang, X., & Fu, Y. (2025). Tailoring the ionomer type to optimize catalyst microenvironment for enhanced CO2 reduction in membrane electrode assembly. Carbon Energy. Advance online publication.

Visakh P M | Chemistry | Lifetime Achievement in Books Award

Dr. Visakh P M | Chemistry | Lifetime Achievement in Books Award

Mahatma Gandhi University | India

Author profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Visakh P. M began his academic journey in polymer chemistry at the School of Chemical Sciences, Mahatma Gandhi University in Kerala, India, where he completed his master’s, MPhil, and doctoral studies. His early training in chemistry laid the foundation for his specialization in polymer science and nanocomposites. His research during these years focused on bio-nanomaterials and advanced polymer systems, providing him with the skills and vision to expand into cutting-edge materials science.

Professional Endeavors

Following his doctoral studies, Dr. Visakh embarked on a global research career. He pursued postdoctoral research at Tomsk Polytechnic University in Russia, later serving as Associate Professor at TUSUR University, Tomsk. His career has since extended to his current role at the Natural Bioactive Materials Laboratory, Department of Bioengineering, Ege University, Turkey. Alongside these appointments, he has engaged in visiting research positions at institutions across Europe and South America, highlighting his international academic presence and collaborations.

Contributions and Research Focus

Dr. Visakh’s research contributions span polymer sciences, nanocomposites, material sciences, bio-nanocomposites, fire-retardant polymers, and liquid crystalline polymers. His work combines fundamental and applied research, advancing knowledge in sustainable materials, sensor development, and high-performance composites. His editorial leadership in producing dozens of books with leading international publishers further reflects his commitment to advancing global scientific discourse.

Accolades and Recognition

Dr. Visakh’s scientific impact has been recognized widely. He has been listed among the World’s Top 2% Scientists by Stanford University for consecutive years, a testament to his citation record, h-index, and influence in materials science. He has received numerous fellowships and research grants, including prestigious national and international awards supporting his advanced studies and collaborations across multiple countries.

Impact and Influence

Through his prolific output of over 50 edited volumes, numerous research articles, and book chapters, Dr. Visakh has shaped the global understanding of polymers and nanomaterials. His contributions extend beyond research to mentoring and academic leadership, as seen in his guest editorial roles for international journals. His ability to connect science with real-world applications has impacted fields ranging from sustainable material development to advanced industrial and biomedical uses.

Legacy and Future Contributions

Dr. Visakh’s legacy lies in his blend of scholarly productivity and global engagement. His editorial work has created lasting resources for researchers, while his scientific contributions continue to inspire advancements in polymer and nanoscience. Looking forward, his ongoing research in bio-nanocomposites and material applications in medicine, energy, and sustainability is set to expand both his personal impact and the reach of polymer science worldwide.

Publications


Article: Improvement of the Thermal Behaviour of Epoxy/Fe Nanoparticle Composites by the Addition of Flame Retardants
Authors: Nazarenko, O.B., Visakh, P.M., Amelkovich, Y.A. et al.
Journal: Journal of Inorganic and Organometallic Polymers and Materials
Year: 2025


Article: Thermal Stability and Flammability of Epoxy Composites Filled with Multi-Walled Carbon Nanotubes, Boric Acid, and Sodium Bicarbonate
Authors: Olga B. Nazarenko, Yulia A. Amelkovich, Alexander G. Bannov, Irina S. Berdyugina, Visakh P. Maniyan
Journal: Polymers
Year: 2021


Article: Mechanical and Thermal Properties of Moringa oleifera Cellulose-Based Epoxy Nanocomposites
Authors: Nadir Ayrilmis, Ferhat Ozdemir, Olga B. Nazarenko, P. M. Visakh
Journal: Journal of Composite Materials
Year: 2019


Article: Effect of Boric Acid on Thermal Behavior of Copper Nanopowder/Epoxy Composites
Authors: Olga B. Nazarenko, Alexander I. Sechin, Tatyana V. Melnikova, P. M. Visakh
Journal: Journal of Thermal Analysis and Calorimetry
Year: 2018


Article: Effect of Electron Beam Irradiation on Thermal and Mechanical Properties of Aluminum Based Epoxy Composites
Authors: Visakh P. M., O.B. Nazarenko, C. Sarath Chandran, T.V. Melnikova, S. Yu. Nazarenko, J.-C. Kim
Journal: Radiation Physics and Chemistry
Year: 2017


Conclusion

Dr. Visakh P. M is a globally recognized scholar whose career exemplifies dedication to research, teaching, and scientific dissemination. From his foundational work in polymer chemistry to his international collaborations and extensive editorial contributions, he has built a profile that reflects excellence, leadership, and innovation. His influence in polymer and nanomaterials research, combined with recognition as one of the world’s leading scientists, ensures that his legacy will continue to guide future discoveries and shape advancements across multiple domains of science.