Xizhong Shen | Engineering | Best Researcher Award

Prof. Dr. Xizhong Shen | Engineering | Best Researcher Award

Shanghai Institute of Technology | China

Author Profile

Scopus

Orcid

Early Academic Pursuits 🎓

Prof. Dr. Xizhong Shen's academic journey is marked by stellar achievements. He began his undergraduate studies at Shanghai University, earning a B.S. degree in 1990. He advanced his knowledge in medical sciences at Nanchuang University, where he received an M.D. in 1995. His pursuit of excellence culminated in a Ph.D. from the prestigious Shanghai Jiao Tong University in 2005, cementing his foundation in advanced research methodologies.

Professional Endeavors 🏫

Dr. Shen serves as a key academic figure at the Shanghai Institute of Technology, Shanghai, China. His professional career is dedicated to fostering innovation in electronics, computational sciences, and academia. Known for his dedication to teaching and mentoring, he inspires a new generation of researchers to contribute to evolving technological fields.

Contributions and Research Focus 🔍

Dr. Shen's research primarily focuses on cutting-edge topics, including deep learning, signal processing, and electronic CAD. With over 100 published research papers, he has significantly contributed to advancing these fields. His expertise is further reflected in his authorship of the authoritative book Digital Signal Processing, a seminal work that bridges theoretical insights with practical applications.

Accolades and Recognition 🏆

Dr. Shen's contributions have garnered widespread recognition in academic and industrial communities. His prolific research output and the quality of his work make him a respected thought leader in his fields of expertise.

Impact and Influence 🌟

Through his groundbreaking research and extensive publications, Dr. Shen has influenced both theoretical and applied sciences. His work in deep learning and signal processing is widely referenced, forming a basis for advancements in these areas. As an educator, his mentorship has shaped numerous successful careers in technology and academia.

Legacy and Future Contributions 🌍

As an innovator and thought leader, Dr. Shen’s legacy lies in his dedication to pushing technological boundaries. His future endeavors are expected to address emerging challenges in signal processing and artificial intelligence, ensuring his ongoing influence in these dynamic fields.

 

Publications


📄 Investigation of Bird Sound Transformer Modeling and Recognition

  • Author(s): Yi, D., Shen, X.
  • Journal: Electronics (Switzerland)
  • Year: 2024

📄 Feature-Enhanced Multi-Task Learning for Speech Emotion Recognition Using Decision Trees and LSTM

  • Author(s): Wang, C., Shen, X.
  • Journal: Electronics (Switzerland)
  • Year: 2024

📄 An Algorithm for Distracted Driving Recognition Based on Pose Features and an Improved KNN

  • Author(s): Gong, Y., Shen, X.
  • Journal: Electronics (Switzerland)
  • Year: 2024

📄 Air Leakage Detection and Rehabilitation Test Methods for Digital Thoracic Drainage Systems

  • Author(s): Wu, X., Shen, X.
  • Conference Paper: 2024 IEEE 2nd International Conference on Sensors, Electronics and Computer Engineering, ICSECE 2024
  • Year: 2024

📄 Temperature Control System of Hot and Cold Alternating Treatment System Based on Kalman Filter Combined with Fuzzy Logic

  • Author(s): Xiong, Z., Shen, X.
  • Journal: Applied Mathematics and Nonlinear Sciences
  • Year: 2024

 

Harikumar Rajaguru | Engineering | Best Researcher Award

Dr. Harikumar Rajaguru | Engineering | Best Researcher Award

Bannari Amman Institute of Technology | India

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Harikumar Rajaguru began his academic journey in electronics and communication engineering. He completed his Bachelor of Engineering in Electronics and Communication Engineering from Regional Engineering College, Trichy, affiliated with Bharathidasan University, in 1988. He then pursued a Master of Engineering in Applied Electronics at the College of Engineering, Guindy, under Anna University Chennai, graduating in 1990. His passion for biomedical signal processing led him to obtain a Ph.D. in Information and Communication Engineering, with a specialization in Bio Signal Processing, from Thiagarajar College of Engineering, Madurai, under Anna University Chennai in 2009. His Ph.D. thesis focused on the use of soft computing techniques and non-linear models for the performance analysis and classification of epilepsy risk levels from EEG signals.

Professional Endeavors

Dr. Rajaguru's professional career spans over 33 years in academia. He began as a lecturer and senior lecturer at PSNA College of Engineering and Technology, Dindigul, where he served for ten years. He then worked as an Assistant Professor at PSG College of Technology, Coimbatore, for one year. His journey continued at Amrita Institute of Technology, Coimbatore, as a Senior Lecturer and Assistant Professor for over two years. Dr. Rajaguru also spent time as a research scholar at Thiagarajar College of Engineering, Madurai. Since 2006, he has been a professor at Bannari Amman Institute of Technology, Sathyamangalam, where he has contributed significantly to the field of biomedical signal processing and soft computing.

Contributions and Research Focus

Dr. Rajaguru has made substantial contributions to biomedical signal processing, particularly in the classification of epilepsy risk levels from EEG signals. He has been involved in several funded projects, including the development of an ASIC fuzzy processor for diabetic epilepsy risk level classification, wavelet networks for epilepsy risk levels classification from EEG signals, and a non-invasive photo plethysmographic-based glucometer for mass diabetes screening. His research primarily focuses on applying soft computing techniques and developing non-linear models for analyzing and classifying biomedical signals.

Accolades and Recognition

Throughout his career, Dr. Rajaguru has received numerous accolades and recognition for his contributions to engineering and biomedical signal processing. He has published multiple papers in SCI-indexed journals and conferences, showcasing his research findings and innovations. His work has been recognized with patents for various biomedical devices, including an electro gastrogram system for detecting gastric disorders, a sensor for stress measurement using photo plethysmography, and a device for detecting ventricular tachycardia. These patents highlight his innovative approach to solving complex biomedical problems.

Impact and Influence

Dr. Rajaguru's work has significantly impacted biomedical signal processing, particularly in the analysis and classification of epilepsy risk levels and the development of non-invasive diagnostic tools. His research has provided new insights into the use of soft computing and wavelet networks in biomedical applications. His contributions have influenced both academic research and practical applications in the medical field, improving diagnostic techniques and patient outcomes.

Legacy and Future Contributions

Dr. Rajaguru's legacy lies in his dedication to advancing biomedical signal processing through innovative research and teaching. He has guided numerous students in their research projects, fostering the next generation of engineers and researchers. As he continues his work at Bannari Amman Institute of Technology, he is poised to make further contributions to the field, particularly in developing new diagnostic tools and techniques for medical applications. His commitment to research and education ensures that his influence will be felt for years to come, both in academia and the broader field of biomedical engineering.

 

Notable Publications

Wavelet feature extraction and bio-inspired feature selection for the prognosis of lung cancer − A statistical framework analysis 2024

Processing of digital mammogram images using optimized ELM with deep transfer learning for breast cancer diagnosis 2023 (5)

Exploration and Enhancement of Classifiers in the Detection of Lung Cancer from Histopathological Images 2023 (6)

Detection of Diabetes through Microarray Genes with Enhancement of Classifiers Performance 2023 (1)

Evaluation and Exploration of Machine Learning and Convolutional Neural Network Classifiers in Detection of Lung Cancer from Microarray Gene—A Paradigm Shift 2023 (6)