Petro Pavlenko | Engineering | Research Excellence Award

Prof. Dr. Petro Pavlenko | Engineering | Research Excellence Award

Zhejiang Ocean University | China

Prof. Dr. Petro Pavlenko is a distinguished researcher whose contributions span engineering design, CAD/CAM/CAE/PDM systems, digital manufacturing, and integrated information environments for industrial applications. With an h-index of 4, 27 documents, and 53 citations, his scholarship reflects both depth and sustained relevance across engineering and information technology domains. His research encompasses automation of design processes, digital 3D modeling, production data management, logical-dynamic models for information security, digital twins, robotics, energy lifecycle management, and industrial information system integration. He has produced more than 250 scientific publications, including 43 international journal papers, alongside 9 patents and multiple influential textbooks and monographs on mathematical modeling, information systems, and production automation. His leadership roles include chairing specialized academic councils, contributing to expert committees in informatics and cybernetics, directing research laboratories, and guiding PhD program development. Collaborations with universities and research centers across Ukraine, Kazakhstan, Germany, France, Latvia, and Russia have supported advancements in automated manufacturing, robot trajectory planning, and industrial data technologies. His recent works focus on additive manufacturing, microstructure–hardness modeling, digital energy systems, and intelligent information support, reinforcing his impact on modern engineering innovation and computational design methodologies.

 

 

Citation Metrics (Scopus)

60

40

20

10

0

Citations
53

Documents
27

h-index
4



View Scopus Profile

 

Featured Publications

Haiwei Wu | Engineering | Best Researcher Award

Prof. Dr. Haiwei Wu | Engineering | Best Researcher Award

Jilin Agricultural University | China

Prof. Dr. Haiwei Wu is an emerging multidisciplinary researcher whose contributions span energy systems, machine learning, spectroscopy, and intelligent diagnostics. His recent research focuses on advanced computational methods applied to energy storage and electric vehicle systems, including the development of an attention-based multi-feature fusion physics-informed neural network for accurate state-of-health estimation of lithium-ion batteries and the application of queuing-theoretic models for sustainable EV charging infrastructure planning. Beyond energy research, he has contributed significantly to the use of mid-infrared spectroscopy combined with machine learning and support vector machines for the authentication and identification of biological and agricultural products, reflecting strong capabilities in analytical modeling and pattern recognition. His publications from 2022 to 2025 highlight expertise in spectral analysis, counterfeit detection, and quality assessment. In addition, he has explored applications of improved YOLOv8 for mechanical part inspection and contributed to research on task-driven cooperative inquiry learning in education. His innovative work is supported by several patents related to electric vehicle charging technologies, demonstrating a commitment to advancing practical, technology-driven solutions across sectors.

Profile : Scopus | Orcid

Featured Publications

Wu, H., Liu, J., Wang, Z., & Li, X. (2025). An attention-based multi-feature fusion physics-informed neural network for state-of-health estimation of lithium-ion batteries. Energies.

Wang, Z., Zou, J., Tu, J., Li, X., Liu, J., & Wu, H. (2025). Towards sustainable EV infrastructure: Site selection and capacity planning with charger type differentiation and queuing-theoretic modeling. World Electric Vehicle Journal.

He, T., Kaimin, W., & Wu, H. (2025). Research on the construction and implementation of a task-driven cooperative inquiry learning model for postgraduate students majoring in music education. Chinese Music Education, (05), 47–53.

Yang, C.-E., Wu, H., Yuan, Y., et al. (2025). Efficient recognition of plum blossom antler hats and red deer antler hats based on support vector machine and mid-infrared spectroscopy. Journal of Jilin Agricultural University, 1–7.

Yang, C.-E., Su, L., Feng, W.-Z., Zhou, J.-Y., Wu, H.-W., Yuan, Y.-M., & Wang, Q. (2023). Identification of Pleurotus ostreatus from different producing areas based on mid-infrared spectroscopy and machine learning. Spectroscopy and Spectral Analysis.

Yang, C.-E., Su, L., Feng, W., et al. (2023). Identification of Pleurotus ostreatus from different origins by mid-infrared spectroscopy combined with machine learning. Spectroscopy and Spectral Analysis, 43(02), 577–582.

Yang, C.-E., Wu, H.-W., Yang, Y., Su, L., Yuan, Y.-M., Liu, H., Zhang, A.-W., & Song, Z.-Y. (2022). A model for the identification of counterfeited and adulterated Sika deer antler cap powder based on mid-infrared spectroscopy and support vector machines. Spectroscopy and Spectral Analysis.

Yang, C.-E., Wu, H., Yang, Y., et al. (2022). Identification model of counterfeiting and adulteration of plum blossom antler cap powder based on mid-infrared spectroscopy and support vector machine. Spectroscopy and Spectral Analysis, 42(08), 2359–2365.

Zilin Zhong | Engineering | Excellence in Research Award

Dr. Zilin Zhong | Engineering | Excellence in Research Award

Guangzhou Railway Polytechnic | China

Dr. Zilin Zhong is a dedicated researcher whose scholarly contributions span advanced structural dynamics, intelligent materials, and applied artificial intelligence. With 6 h-index, 132 citations, and 13 documents, the research portfolio demonstrates a growing international impact in civil and mechanical engineering domains. His work focuses on the dynamic stability of arch structures, parametric and resonance instability, piezoelectric intelligent structural control, and AI-based recognition techniques, complemented by studies in vocational education. Dr. Zhong has published influential papers in high-ranking journals such as Thin-Walled Structures, Engineering Structures, International Journal of Mechanical Sciences, Journal of Sound and Vibration, and Composite Structures. His investigations include sub-harmonic and simultaneous resonance of thin-walled arches, nonlinear instability of plates and arches under multi-frequency excitation, and stochastic stability of viscoelastic systems. He has also contributed to understanding vibration impacts from metro-induced excitation and dynamic internal forces of arches. Beyond publications, he has developed practical innovations through patents and software, including resonance-based loading devices, piezoelectric transducers for railway vibration energy harvesting, and a track parameter evaluation system. Collectively, his research advances theoretical modeling, experimental validation, and engineering applications in dynamic instability and intelligent structural systems.

Profiles : Scopus | Orcid

Featured Publications

Shen, F., Zhong, Z., Xu, X., Li, J., Dong, Q., & Deng, J. (2025). In-plane simultaneous resonance instability behaviors of a fixed arch under a two-frequency radial uniformly distributed excitation. International Journal of Non-Linear Mechanics, 25(7), Article 105056.

Deng, J., Liu, A., Zhong, Z., & Guangzhou University. (2025). Numerical analysis of dynamic stability of flutter panels in supersonic flow. International Journal of Structural Stability and Dynamics, 25(18).

Zhong, Z., Liu, A., Guo, Y., Xu, X., Deng, J., & Yang, J. (2023). Sub-harmonic and simultaneous resonance instability of a thin-walled arch under a vertical base excitation at two frequencies. Thin-Walled Structures, 191, Article 111094.

Zhong, Z., Liu, A., Fu, J., Pi, Y.-L., Deng, J., & Xie, Z. (2021). Analytical and experimental studies on out-of-plane dynamic parametric instability of a circular arch under a vertical harmonic base excitation. Journal of Sound and Vibration, 500, Article 116011.

Zhong, Z., Liu, A., Pi, Y.-L., Deng, J., Fu, J., & Gao, W. (2021). In-plane dynamic instability of a shallow circular arch under a vertical-periodic uniformly distributed load along the arch axis. International Journal of Mechanical Sciences, 189, Article 105973.

Zhong, Z., Liu, A., Pi, Y.-L., Deng, J., Lu, H., & Li, S. (2019). Analytical and experimental studies on dynamic instability of simply supported rectangular plates with arbitrary concentrated masses. Engineering Structures, 196, Article 109288.