Donglin Zu | Physics and Astronomy | Research Excellence Award

Prof. Donglin Zu | Physics and Astronomy | Research Excellence Award

Peking University | China

Prof. Donglin Zu is a distinguished physicist whose career spans pioneering contributions to electromagnetics, nuclear magnetic resonance (NMR), magnetic resonance imaging (MRI), and, more recently, photon structure theory. His early work involved teaching electromagnetics and developing an independent NMR magnetometer, along with solving key control challenges in high-voltage electrostatic accelerators. His international research experience includes studying RF superconducting cavities at Cornell University, followed by leading a major project on the practical design of niobium cavities. Over two decades, he made significant advances in MRI engineering, contributing to wavelet-based medical image fusion, high-resolution NMR spectral reconstruction, shim coil design, permanent-magnet MRI optimization, and low-noise preamplifier development. He authored influential textbooks on electrodynamics and MRI, widely adopted in advanced training and research. His extensive publication record encompasses innovations in superconducting magnets, ferromagnetic shimming, pulse sequence optimization, image contrast mechanisms, and magnet design methodologies. As a long-term consultant to MRI industries, he helped translate theoretical principles into practical imaging technologies. In recent years, his research has shifted toward foundational physics, producing breakthrough models on single-photon structures, standing-wave photon behavior in constrained spaces, and multi-photon composite systems, marking a new phase of theoretical advancement with impactful emerging publications.

Profile : Orcid

Featured Publications

Zu, D. (2025). Standing wave photon structures in constraint spaces. Photonics.

Zu, D. (2025). Standing wave photon structures in constraint spaces [Preprint].

Zu, D. (2025). Single photon structure model and multi-photon composite monomer. Optics Express.

Zu, D. (2016). Electrodynamics (Rev. ed.). Tsinghua University Press.

Zu, D. (2015). Nuclear magnetic resonance imager. Science Press.

Zu, D., & Gao, J. (2014). Nuclear magnetic resonance imaging. Peking University Press.

Liu, W., Casanova, F., Blümich, B., & Zu, D. (2012). An efficacious target-field approach to design shim coils for Halbach magnet of mobile NMR sensors. Applied Magnetic Resonance.

Zhao, X., Wen, Z., Huang, F., Lu, S., Wang, X., Hu, S., Zu, D., & Zhou, J. (2011). Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magnetic Resonance in Medicine.

Cao, X., Zu, D., Zhao, X., Fan, Y., & Gao, J. (2011). The design of a low-noise preamplifier for MRI. Science China Technological Sciences.

Tang, X., Zu, D., Wang, T., & Han, B. (2010). An optimizing design method for a compact iron-shielded superconducting magnet for use in MRI. Superconductor Science and Technology.

Tang, X., Li-Ming, H., & Zu, D.-L. (2010). Active ferromagnetic shimming of the permanent magnet for magnetic resonance imaging scanner. Chinese Physics B.

Zhao, X., Chen, M., Zhang, C., Hu, S., & Zu, D. (2010). Experimental evaluation of dual acceptance window weighting function for right coronary MR angiography at 3.0 T. Magnetic Resonance Imaging.

Zu, D., Liming, H., Xueming, C., & Xin, T. (2010). Analysis on background magnetic field to generate eddy current by pulsed gradient of permanent-magnet MRI. Science China Series E.