Northeastern University | China
Author Profile
Orcid
Early Academic Pursuits 🎓
Mr. Xinhai Wang's academic journey began with an undergraduate degree in Mathematics and Applied Mathematics from Northeastern University, where he achieved a GPA of 3.81/5. His academic excellence earned him several accolades, such as the "Outstanding Student Cadre" and "Three Good Students" awards, reflecting his dedication to both academics and extracurricular activities. Wang was actively involved in numerous projects during his undergraduate years, honing his skills in advanced algebra, data mining, and mathematical modeling, laying the groundwork for his future endeavors.
Professional Endeavors 🏆
In September 2022, Xinhai Wang assumed the role of monitor for Northeastern University's Master of Science Class 2201, demonstrating exemplary leadership and organizational skills. His work extended beyond the classroom, where he helped in the construction of class activities and assisted in Party branch operations. Wang was awarded the honorary title of Outstanding Graduate Student Cadre for his relentless efforts in promoting student engagement and fostering a collaborative environment. As a deputy director in the Project Development Department of the Social Practice Department, he organized impactful student initiatives such as charity sales, making significant contributions to the student community.
Contributions and Research Focus 🔬
Mr. Wang's contributions to academia and research are vast, with his work primarily centered on applying advanced algorithms in real-world scenarios. He has engaged in several high-level projects, including the application of genetic algorithms in mobile chess and using deep learning techniques like Deep Q Networks for stock market predictions. His research has tackled challenges in time series prediction, exploring fractional order random configuration networks (FSCN) to address the inherent non-stationarity in real-world data. These projects showcase his technical expertise in MATLAB and Python, alongside his growing knowledge of reinforcement learning and machine learning.
Accolades and Recognition 🏅
Xinhai Wang's academic brilliance has been recognized throughout his career, both during his undergraduate and graduate studies. His GPA of 3.40/4 ranked him 2nd in his class, further earning him prestigious honors such as the President Scholarship and First-Class Academic Scholarship. His leadership in class and organizational roles has led to multiple "Outstanding Class Cadre" awards. Wang's academic achievements extend beyond his GPA and awards, with his research work being submitted to conferences and awaiting SCI journal reviews, positioning him as a rising star in applied statistics and data science.
Impact and Influence 🌟
Through his roles in student governance and research, Wang has had a lasting impact on both his peers and the academic community. He has innovated branch activities, guided students in social practice initiatives, and created platforms for broader engagement in scientific and social matters. His research endeavors, such as the application of deep learning to stock prediction and time series analysis, contribute to the growing body of knowledge in the field of statistical modeling and artificial intelligence, influencing future technological advancements.
Legacy and Future Contributions 💡
Mr. Xinhai Wang's journey reflects a commitment to excellence in academic leadership, research, and innovation. As he continues to explore the boundaries of machine learning, algorithm design, and data modeling, his future contributions will likely have a profound effect on emerging fields like stock prediction and industrial data analysis. His ongoing projects in MATLAB and Python, combined with his growing expertise in reinforcement learning, position him for future success in both academic and professional arenas.
Publications
📄 Prediction of Ship-Unloading Time Using Neural Networks
Author: Zhen Gao, Danning Li, Danni Wang, Zengcai Yu, Witold Pedrycz, Xinhai Wang
Journal: Applied Sciences
Year: 2024-09
📄 Novel Admissibility Criteria and Multiple Simulations for Descriptor Fractional Order Systems with Minimal LMI Variables
Author: Xinhai Wang, Jin-Xi Zhang
Journal: Fractal and Fractional
Year: 2024-06