Liuxian Zhao | Engineering | Best Researcher Award

Assoc Prof Dr. Liuxian Zhao | Engineering | Best Researcher Award

Hefei University of Technology | China

Author Profile

Scopus

Orcid

Google Scholar

Early Academic Pursuits

Dr. Liuxian Zhao's journey in mechanical engineering began with a Bachelor's degree from Tianjin University of Science and Technology, China, in 2008. He then pursued two Master's degrees in Mechanical Engineering: the first in 2011 from Hefei University of Technology, China, focusing on the research of multi-step active disassembly methods, and the second in 2013 from the University of South Carolina, USA, where he explored ultrasound wave-based structural health monitoring. Dr. Zhao completed his Ph.D. in 2018 at the University of Notre Dame, USA, with a thesis on structural tailoring for tomographic damage detection, energy harvesting, and vibration control.

Professional Endeavors

Dr. Zhao's professional career includes significant academic and research positions. From 2015 to 2017, he was a Visiting Scholar at Purdue University, where he worked on frequency selective structures and structural health monitoring using electrical impedance tomography. As a Research Scientist at Nanyang Technological University from 2017 to 2018, he developed micro-/nano-scale porous materials for acoustic and vibrational impact mitigation. He then served as a Postdoctoral Research Associate at the University of Maryland from 2019 to 2022, focusing on structural Luneburg lenses for wave propagation manipulations. Currently, Dr. Zhao is an Associate Professor at Hefei University of Technology, where he explores acoustic metamaterials for enhanced sensing systems.

Contributions and Research Focus

Dr. Zhao's research interests encompass acoustic lenses, metamaterials, metasurfaces, phononic crystals, and acoustic black holes. His work on acoustic metamaterials aims to overcome limitations in detecting weak acoustic signals by enhancing signal-to-noise ratios. He has developed novel sensors and lenses for acoustic applications, contributing significantly to fields such as structural health monitoring, non-destructive testing, and energy harvesting. His research includes pioneering work on acoustic black holes for vibration control and energy harvesting.

Accolades and Recognition

Dr. Zhao's research excellence is reflected in his numerous publications and the prestigious grants he has secured. His work has been funded by notable institutions such as the National Nature Science Foundation of China (NSFC), the United States Department of Agriculture (USDA), and the US National Science Foundation (NSF). He has also served as a reviewer for various high-impact journals, further demonstrating his expertise and influence in the field of mechanical and acoustic engineering.

Impact and Influence

Dr. Zhao's contributions to the field of acoustic engineering have had a profound impact on both theoretical and applied aspects. His innovative approaches to manipulating wave propagation and improving acoustic sensing systems have advanced the capabilities of structural health monitoring and non-destructive evaluation. His work on Luneburg lenses and acoustic metamaterials has set new benchmarks in acoustic wave manipulation, influencing future research and technological developments.

Legacy and Future Contributions

Dr. Zhao's legacy is characterized by his innovative contributions to acoustic metamaterials and their applications. His ongoing research aims to further enhance acoustic sensing systems and explore new avenues in energy harvesting and vibration control. As an active researcher and educator, Dr. Zhao continues to inspire and mentor the next generation of engineers and scientists, ensuring that his pioneering work will have a lasting impact on the field of acoustic engineering.

 

Notable Publications

Super-resolution imaging based on modified Maxwell's fish-eye lens 2024 (1)

Resonant type Luneburg lens for broadband low frequency focusing 2024

Passive directivity detection of acoustic sources based on acoustic Luneburg lens 2023 (1)

Acoustic beam splitter based on acoustic metamaterial Luneburg lens 2023 (5)

A scalable high-porosity wood for sound absorption and thermal insulation 2023 (48)

 

 

 

 

 

 

Taoqi Lu | Engineering | Best Researcher Award

Mr. Taoqi Lu | Engineering | Best Researcher Award

Guilin University of Electronic Technology | China

Author Profile

Orcid 

Early Academic Pursuits

Taoqi Lu embarked on his academic journey at Guilin University of Electronic Technology in Liuzhou, China, pursuing a Master's degree in Microstructure Mechanics with a focus on acoustic metamaterial applied mathematics. His dedication to exploring intricate aspects of engineering commenced during this phase.

Professional Endeavors

As a member of the National Natural Science Foundation of China, Taoqi Lu actively contributed to a groundbreaking research project (Grant number: 52065013). His professional journey includes delving into the mechanisms and optimization design of functional gradient porous structures based on acoustic black holes (ABHs). This endeavor showcases his commitment to advancing the understanding of acoustic phenomena.

Contributions and Research Focus

Taoqi Lu's research revolves around two pivotal areas: phononic crystals (PCs) and microscale acoustic black holes (micro-ABHs). His efforts are geared towards addressing the challenges of achieving a satisfactory band gap in traditional PCs at smaller lattice constants. Additionally, his focus extends to exploring the energy concentration characteristics of micro-ABHs, incorporating scale effects into the dynamic analysis.

Accolades and Recognition

Taoqi Lu's noteworthy contributions earned him recognition as a member of the National Natural Science Foundation of China, highlighting his expertise and significance in the field. His Master's thesis, titled "Study on the Mechanism of Energy Aggregation in Acoustic Black Holes Considering Scale Effects," attests to the quality and depth of his research.

Impact and Influence

Taoqi Lu's research on functional gradient porous structures and micro-ABHs has the potential to influence advancements in acoustic metamaterials. By addressing scale effects, his work contributes valuable insights into enhancing the performance and applicability of acoustic structures.

Legacy and Future Contributions

Taoqi Lu's legacy lies in pushing the boundaries of understanding microstructure mechanics and acoustic metamaterials. His future contributions are anticipated to further enrich the field, with a focus on optimizing porous structures for enhanced acoustic properties. As he progresses in his academic journey, Taoqi Lu is poised to leave a lasting impact on the realm of engineering.

Notable Publications

Vibrational loss analysis of a new type of phononic crystal with a tungsten block embedded inside a rubber matrix 2023

Effect of the microstructure-dependent nonlocality on acoustic black holes 2023

The study of low-frequency ultrawide band gap of conical scatterer phononic crystal 2023

Low-Frequency Ultrawide Band Gap Study of Symmetric Conical Scatterer Phononic Crystal 2023 (1)