Prof. Junwei Du | Computer Science | Best Researcher Award
Qingdao University of Science and Technology | China
Author Profile
Early Academic Pursuits ๐
Prof. Junwei Du embarked on his academic journey with a strong foundation in computer science. He earned his Ph.D. in Computer Software and Theory from Tongji University in 2010. His thirst for international exposure led him to become a Visiting Scholar at Arizona State University, USA, in 2014. Further enriching his skills, Prof. Du attended the AI Training Workshop for Young Backbone hosted by the University of Queensland and the University of Technology, Sydney, Australia, in September 2018.
Professional Endeavors ๐ผ
Prof. Junwei Du is currently Executive Vice Dean of the School of Data Science at Qingdao University of Science and Technology. His professional affiliations include being a Distinguished Member of CCF and holding memberships in prestigious committees like the China Computer Society's Software Engineering Specialised Committee and the China Automation Society's Network Information Service Committee. Additionally, he serves as a Director of the Shandong Artificial Intelligence Society, underscoring his leadership in the field.
Contributions and Research Focus ๐ฌ
Prof. Du's research focuses on cutting-edge areas like intelligent software engineering, graph representation learning, and recommendation algorithms. He has led numerous high-impact projects, including a National Natural Science Foundation of China top-level project, two provincial funds, and a key R&D project in Shandong Province. His work has also extended to over 10 national vertical projects and nine enterprise-driven horizontal projects. Prof. Du has published more than 60 academic papers in renowned journals such as Information Sciences, Software Journal, and Expert Systems with Applications. His research has significantly contributed to software fault prediction, cross-domain recommendation systems, and privacy-preserving algorithms in IoT.
Accolades and Recognition ๐
Prof. Junwei Duโs achievements have earned him notable accolades. As a key participant, he received the Third Prize of Shandong Provincial Scientific and Technological Progress and the Third Prize of Shandong Provincial Teaching Achievement. He has also guided his students to excel in prestigious competitions, leading them to win over 20 national awards in software design and testing.
Impact and Influence ๐
Through his extensive contributions, Prof. Junwei Du has shaped the landscape of intelligent software systems and data science education. His leadership in research and teaching has inspired countless students to pursue innovation. Prof. Duโs work on ensemble learning, recommendation algorithms, and software fault prediction holds significant implications for industries ranging from IT to industrial IoT, enhancing technological efficiency and reliability.
Legacy and Future Contributions ๐ฎ
Prof. Junwei Du continues to build a legacy of excellence, bridging academia and industry with transformative research and mentorship. His focus on emerging areas like graph representation learning and cross-domain recommendation systems will pave the way for smarter AI applications. By fostering collaboration and innovation, he is set to make lasting contributions to data science and software engineering, empowering the next generation of researchers and professionals.
Publications
๐ Improving Bug Triage with the Bug Personalized Tossing Relationship
Authors: Wei Wei, Haojie Li, Xinshuang Ren, Feng Jiang, Xu Yu, Xingyu Gao, Junwei Du
Journal: Information and Software Technology
Year: 2025
๐ ย A Privacy-Preserving Cross-Domain Recommendation Algorithm for Industrial IoT Devices
Authors: Yu X., Peng Q., Lv H., Du J., Gong D.
Journal: IEEE Transactions on Consumer Electronics
Year: 2024
๐ Research on Efficient Data Warehouse Construction Methods for Big Data Applications
Authors: Zhao C., Du J., Wang F., Li H.
Journal: Applied Mathematics and Nonlinear Sciences
Year: 2024
๐ A Cross-Domain Intrusion Detection Method Based on Nonlinear Augmented Explicit Features
Authors: Yu X., Lu Y., Jiang F., Du J., Gong D.
Journal: IEEE Transactions on Network and Service Management
Year: 2024
๐ A Multi-Behavior Recommendation Based on Disentangled Graph Convolutional Networks and Contrastive Learning
Authors: Yu J., Jiang F., Du J.W., Yu X.
Journal/Proceedings: Communications in Computer and Information Science
Year: 2024